In mice and rats, maternal dietary choline intake during late pregnancy modulates mitosis and apoptosis in progenitor cells of the fetal hippocampus and septum. Because choline and folate are interrelated metabolically, we investigated the effects of maternal dietary folate availability on progenitor cells in fetal mouse telencephalon. Timed-pregnant mice were fed a folate-supplemented (FS), control (FCT) or folate-deficient (FD) AIN-76 diet from d 11-17 of pregnancy. FD decreased the number of progenitor cells undergoing cell replication in the ventricular zones of the developing mouse brain septum (46.6% of FCT), caudate putamen (43.5%), and neocortex (54.4%) as assessed using phosphorylated histone H3 (a specific marker of mitotic phase) and confirmed by bromodeoxyuridine (BrdU) labeling of the S phase. In addition, 106.2% more apoptotic cells were found in FD than in FCT fetal septum. We observed 46.8% more calretinin-positive cells in the medial septal-diagonal band region of FD compared with pups from control dams. FS mice did not differ significantly from FCT mice in any of these measures. These results suggest that progenitor cells in fetal forebrain are sensitive to maternal dietary folate during late gestation.
Previously we have shown that changes in maternal dietary choline are associated with permanent behavioral changes in offspring. Importantly, in adult male rats, feeding a choline-deficient diet increases the localization of cyclin-dependent kinase inhibitors (CDKIs) in the liver, whereas young adult CDKI knockout mice (p15Ink4B or p27Kip1) exhibit behavioral abnormalities. Thus, maternal dietary choline-CDKI interactions could underlie the changes we observe in fetal hippocampal development and cognitive function in offspring. Here, timed-pregnant rats on embryonic day E12 were fed the AIN-76 diet with varying levels of dietary choline for 6 days, and, on E18, fetal brain sections were collected, and the localization of CDKI proteins was studied using immunohistochemistry and an unbiased image analysis method. In choline-supplemented animals compared to controls, the number of cells with nuclear immunoreactivity for p15Ink4b CDKI protein was decreased 2- to 3-fold in neuroepithelial ventricular zones and adjacent subventricular zones corresponding to the fimbria, primordial dentate gyrus and Ammon’s horn regions in the fetal hippocampus. In contrast, maternal dietary choline deficiency significantly decreased nuclear p15Ink4b immunoreactivity in the neuroepithelial layer of the dentate gyrus. Unlike p15Ink4b, the CDKI protein p27Kip1 was observed almost exclusively in the cytoplasm, though the protein was distributed throughout the proliferating and postmitotic zones in the E18 fetal hippocampus. Maternal dietary choline supplementation decreased the cytoplasmic staining intensity for p27Kip1 throughout the fetal hippocampus compared to control animals. Choline deficiency increased the staining intensity of p27Kip1 throughout the hippocampus in association with increased expression of MAP-1 and vimentin proteins. These results link maternal dietary choline availability to CDKI protein immunoreactivity and commitment to differentiation during fetal hippocampal development.
Despite recent advances in therapies including immunotherapy, patients with acute myeloid leukaemia (AML) still experience relatively poor survival rates. The Inhibition of Apoptosis (IAP) family member, survivin, also known by its gene and protein name, Baculoviral IAP Repeat Containing 5 (BIRC5), remains one of the most frequently expressed antigens across AML subtypes. To better understand its potential to act as a target for immunotherapy and a biomarker for AML survival, we examined the protein and pathways that BIRC5 interacts with using the Kyoto Encyclopedia of Genes and Genomes (KEGG), search tool for recurring instances of neighbouring genes (STRING), WEB-based Gene Set Analysis Toolkit, Bloodspot and performed a comprehensive literature review. We then analysed data from gene expression studies. These included 312 AML samples in the Microarray Innovations In Leukemia (MILE) dataset. We found a trend between above median levels of BIRC5 being associated with improved overall survival (OS) but this did not reach statistical significance (p = 0.077, Log-Rank). There was some evidence of a beneficial effect in adjusted analyses where above median levels of BIRC5 were shown to be associated with improved OS (p = 0.001) including in Core Binding Factor (CBF) patients (p = 0.03). Above median levels of BIRC5 transcript were associated with improved relapse free survival (p < 0.0001). Utilisation of a second large cDNA microarray dataset including 306 AML cases, again showed no correlation between BIRC5 levels and OS, but high expression levels of BIRC5 correlated with worse survival in inv(16) patients (p = 0.077) which was highly significant when datasets A and B were combined (p = 0.001). In addition, decreased BIRC5 expression was associated with better clinical outcome (p = 0.004) in AML patients exhibiting CBF mainly due to patients with inv(16) (p = 0.007). This study has shown that BIRC5 expression plays a role in the survival of AML patients, this association is not apparent when we examine CBF patients as a cohort, but when those with inv(16) independently indicating that those patients with inv(16) would provide interesting candidates for immunotherapies that target BIRC5.
Recent studies have shown that short non-coding RNAs, known as microRNAs (miR-NAs) and their dysregulation, are implicated in the pathogenesis of acute myeloid leukaemia (AML). This is due to their role in the control of gene expression in a variety of molecular pathways. Therapies involving miRNA suppression and replacement have been developed. The normalisation of expression and the subsequent impact on AML cells have been investigated for some miRNAs, demonstrating their potential to act as therapeutic targets. Focussing on miRs with therapeutic potential, we have reviewed those that have a significant impact on the aberrant biological processes associated with AML, and crucially, impact leukaemic stem cell survival. We describe six miRNAs in preclinical trials (miR-21, miR-29b, miR-126, miR-181a, miR-223 and miR-196b) and two miRNAs that are in clinical trials (miR-29 and miR-155). However none have been used to treat AML patients and greater efforts are needed to develop miRNA therapies that could benefit AML patients in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.