The published literature describing three real-ear-attenuation-at-threshold (REAT), nine above-threshold, and four objective methods of measuring hearing protector attenuation is reviewed and analyzed with regard to the accuracy, practicality, and applicability of the various techniques. The analysis indicates that the REAT method is one of the most accurate available techniques since it assesses all of the sound paths to the occluded ear and, depending upon the experimenter's intention, can reflect actual in-use attenuation as well. An artifact in the REAT paradigm is that masking in the occluded ear due to physiological noise can spuriously increase low-frequency (less than or equal to 500 Hz) attenuation, although the error never exceeds approximately 5 dB, regardless of the device, except below 125 Hz. Since the preponderance of available data indicates that attenuation is independent of sound level for intentionally linear protectors, the use of above-threshold procedures to evaluate attenuation is not a necessity. An exception exists in the case of impulsive noises, for which the existing data are not unequivocal with regard to hearing protector response characteristics. Two of the objective methods (acoustical test fixture and microphone in real ear) are considerable time savers. All objective procedures are lacking in their ability to accurately determine the importance of the flanking bone-conduction paths, although some authors have incorporated this feature as a post-measurement correction. The microphone in real-ear approach is suggested to be one of the most promising for future standardization efforts and research purposes, and the acoustical test fixture technique is recommended (with certain reservations) for quality control and buyer acceptance testing.
With louder and louder weapon systems being developed and military personnel being exposed to steady noise levels approaching and sometimes exceeding 150 dB, a growing interest in greater amounts of hearing protection is evident. When the need for communications is included in the equation, the situation is even more extreme. New initiatives are underway to design improved hearing protection, including active noise reduction (ANR) earplugs and perhaps even active cancellation of head-borne vibration. With that in mind it may be useful to explore the limits to attenuation, and whether they can be approached with existing technology. Data on the noise reduction achievable with high-attenuation foam earplugs, as a function of insertion depth, will be reported. Previous studies will be reviewed that provide indications of the bone-conduction (BC) limits to attenuation that, in terms of mean values, range from 40 to 60 dB across the frequencies from 125 Hz to 8 kHz. Additionally, new research on the effects of a flight helmet on the BC limits, as well as the potential attenuation from deeply inserted passive foam earplugs, worn with passive earmuffs, or with active-noise reduction (ANR) earmuffs, will be examined. The data demonstrate that gains in attenuation exceeding 10 dB above the head-not-covered limits can be achieved if the head is effectively shielded from acoustical stimulation.
The most commonly alleged experimental artifact associated with real-ear attenuation at threshold (REAT) measurements of hearing protection devices (HPDs) was examined: Masking of the protected thresholds due to physiological noise amplified by the occlusion effect. An ear canal mounted subminiature microphone was used to obtain objective measures of physiological noise in occluded and unoccluded test conditions and of the insertion loss (IL) of insert, semi-aural, supra-aural and circumaural HPDs when exposed to broadband noise with a sound pressure level of 93 dB. Measurements spanned 1/3 octave bands from 125 Hz to 2 kHz. Attenuation was also measured via a subjective REAT procedure and the magnitude of the occlusion effect was examined via bone conduction audiometry. The IL data confirmed the accuracy of the REAT results except at the lowest frequencies tested, where the degree to which the REAT values were spuriously inflated was quantified and found to be device related. Furthermore, the magnitude of the error (which never exceeded 5 dB) could be predicted by measuring the physiological noise in the occluded ear and calculating how much this would mask the occluded threshold. It was noted that no evidence was found in the data to suggest a dependency of HPD attenuation on sound level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.