The organization of projections from the cholinergic neurons of the basal forebrain to neocortex and associated structures was investigated in the rhesus monkey with the help of horseradish peroxidase transport, acetylcholinesterase histochemistry, and choline acetyltransferase immunohistochemistry. Four groups of neurons contained cholinergic perikarya and were designated as Chl-Ch4. The C h l group corresponds to the medial septa1 nucleus; about 105% of its neurons are cholinergic, and it provides a substantial projection to the hippocampus. The Ch2 group corresponds to the vertical nucleus of the diagonal band; a t least 70%' of its neurons are cholinergic, and it is the major source of innervation that the hippocampus and hypothalamus receive from the Chl-Ch4 complex. The Ch3 group most closely corresponds to the horizontal nucleus of the diagonal band; only 1 % of its neurons can definitely be shown to be cholinergic, and it is the major source of Chl-Ch4 projections to the olfactory bulb. The Ch4 group most closely corresponds to the nucleus basalis of Meynert; a t least 90% of its neurons are cholinergic, and it has projections to widespread areas of cortex and to the amygdala. In fact, the Ch4 group provides the single major source of cholinergic innervation for the entire cortical surface. In this respect, it is analogous to the raphe nuclei and to the nucleus locus coeruleus, which constitute the major sources of widespread cortical serotonergic and noradrenergic innervation, respectively.The extensive Ch4 group can be divided into several subdivisions. Each subdivision has a preferential set of targets for its projections even though the connection patterns contain considerable overlap. The anteromedial subdivision of Ch4 is the major source of cholinergic projections to areas on the medial aspect of the cerebral hemispheres: the anterolateral Ch4 subdivision is the major source of cholinergic projections to frontoparietal opercular areas and to the amygdala; the intermediate Ch4 subdivision provides the major cholinergic input for a variety of dorsal prefrontal, insular, posterior parietal, inferotemporal, and peristriate areas; and the posterior subdivision of Ch4 provides the major cholinergic innervation of superior temporal and immediately adjacent areas.
sorLA (sorting protein-related receptor) is a type-1 membrane protein of unknown function that is expressed in neurons. Its homology to sorting receptors that shuttle between the plasma membrane, endosomes, and the Golgi suggests a related function in neuronal trafficking processes. Because expression of sorLA is reduced in the brain of patients with Alzheimer's disease (AD), we tested involvement of this receptor in intracellular transport and processing of the amyloid precursor protein (APP) to the amyloid -peptide (A), the principal component of senile plaques. We demonstrate that sorLA interacts with APP in vitro and in living cells and that both proteins colocalize in endosomal and Golgi compartments. Overexpression of sorLA in neurons causes redistribution of APP to the Golgi and decreased processing to A, whereas ablation of sorLA expression in knockout mice results in increased levels of A in the brain similar to the situation in AD patients. Thus, sorLA acts as a sorting receptor that protects APP from processing into A and thereby reduces the burden of amyloidogenic peptide formation. Consequently, reduced receptor expression in the human brain may increase A production and plaque formation and promote spontaneous AD.endocytic receptors ͉ knockout mouse ͉ neurodegeneration ͉ Vps10p-domain receptors S orting protein-related receptor (sorLA), also known as LR11, is a 250-kDa type-1 membrane protein of unknown function that is expressed in neurons of the central and peripheral nervous system (1-4). The protein is a member of a family of neuronal receptors that share structural similarity with the vacuolar protein sorting 10 protein (Vps10p), a sorting protein in yeast that transports carboxypeptidase Y from the Golgi to the vacuole (5). Other family members include the proneurotrophin receptor sortilin (6) and the head activator-binding protein in hydra (7). Because sorLA interacts with the family of GGA (Golgi-localizing, ␥-adaptin ear homology domain, ARFinteracting) adaptors that shuttle between the Golgi and endosomes͞lysosomes, the receptor was proposed to act in intracellular protein trafficking (8). The relevance of such sorLAmediated protein transport in neurons is unclear at present. However, expression profiling has demonstrated reduction of sorLA expression in the brain of patients suffering from Alzheimer's disease (AD), suggesting a causal role for the receptor in the pathogenesis of this disease (9).Central to the pathogenesis of AD is the proteolytic processing of a neuronal membrane protein called the amyloid precursor protein (APP). APP follows a complex intracellular trafficking pathway that influences processing to either a soluble fragment sAPP␣ (nonamyloidogenic) or to sAPP and the insoluble amyloid -peptide (A), the principal component of senile plaques (10). The rate of A production is considered the major risk factor for onset of AD (10). En route through the secretory pathway to the cell surface, most newly synthesized APP molecules are cleaved into sAPP␣ by ␣-secretase;...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.