Abstract-Modern parallel architectures have both heterogeneous processors and deep, complex memory hierarchies. We present Legion, a programming model and runtime system for achieving high performance on these machines. Legion is organized around logical regions, which express both locality and independence of program data, and tasks, functions that perform computations on regions. We describe a runtime system that dynamically extracts parallelism from Legion programs, using a distributed, parallel scheduling algorithm that identifies both independent tasks and nested parallelism. Legion also enables explicit, programmer controlled movement of data through the memory hierarchy and placement of tasks based on locality information via a novel mapping interface. We evaluate our Legion implementation on three applications: fluid-flow on a regular grid, a three-level AMR code solving a heat diffusion equation, and a circuit simulation.
Abstract-Applications on modern supercomputers are increasingly limited by the cost of data movement, but mainstream programming systems have few abstractions for describing the structure of a program's data. Consequently, the burden of managing data movement, placement, and layout currently falls primarily upon the programmer.To address this problem we previously proposed a data model based on logical regions and described Legion, a programming system incorporating logical regions. In this paper, we present structure slicing, which incorporates fields into the logical region data model. We show that structure slicing enables Legion to automatically infer task parallelism from field non-interference, decouple the specification of data usage from layout, and reduce the overall amount of data moved. We demonstrate that structure slicing enables both strong and weak scaling of three Legion applications including S3D, a production combustion simulation that uses logical regions with thousands of fields, with speedups of up to 3.68X over a vectorized CPU-only Fortran implementation and 1.88X over an independently hand-tuned OpenACC code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.