Although fish oil supplementation may prevent the onset of diet-induced insulin resistance in rats, it appears to worsen glycemic control in humans with existing insulin resistance. In the present study, the euglycemic, hyperinsulinemic (4× basal) clamp technique with [3-3H]glucose and 2-deoxy-[1-14C]glucose was used to directly compare the ability of fish oil to prevent and reverse sucrose-induced insulin resistance. In study 1 (prevention study), male Wistar rats were fed a purified high-starch diet (68% of total energy), high-sucrose diet (68% of total energy), or high-sucrose diet in which 6% of the fat content was replaced by menhaden oil for 5 wk. In study 2 (reversal study), animals were fed the high-starch or high-sucrose diets for 5 wk and then the sucrose animals were assigned to one of the following groups for an additional 5 wk: high starch, high sucrose, or high sucrose with 6% menhaden oil. Rats fed the high-starch diet for 10 wk served as controls. In study 3 (2nd reversal study), animals followed a similar diet protocol as in study 2; however, the reversal period was extended to 15 wk. In study 1, the presence of the fish oil in the high-sucrose diet prevented the development of insulin resistance. Glucose infusion rates (GIR, mg ⋅ kg−1 ⋅ min−1) were 17.0 ± 0.9 in starch, 10.6 ± 1.7 in sucrose, and 15.1 ± 1.5 in sucrose with fish oil animals. However, in study 2, this same diet was unable to reverse sucrose-induced insulin resistance (GIR, 16.7 ± 1.4 in starch, 7.1 ± 1.5 in sucrose, and 4.8 ± 0.9 in sucrose with fish oil animals). Sucrose-induced insulin resistance was reversed in rats that were switched back to the starch diet (GIR, 18.6 ± 3.0). Results from study 3 were similar to those observed in study 2. In summary, fish oil was effective in preventing diet-induced insulin resistance but not able to reverse it. A preexisting insulin-resistant environment interferes with the positive effects of menhaden oil on insulin action.
In male rats, 2 wk of high-sucrose feeding results in insulin resistance and hypertriglyceridemia [Pagliassotti, M.J., P.A. Prach, T.A. Koppenhafer, and D.A. Pan. Am. J. Physiol. 271 (Regulatory Integrative Comp. Physiol. 40): R1319-R1326, 1996]. The present study aimed to determine if female rats also become insulin resistant and hypertriglyceridemic in response to high-sucrose feeding. Female Wistar rats (7 wk old) were fed either a high-sucrose diet (68% energy) (SU) or a high-starch diet (68% energy) (ST) for 3, 5, or 8 wk. In each animal, glucose kinetics were measured using [3-(3)H]glucose under basal and hyperinsulinemic conditions (insulin infusion 4.0 mU.kg-1.min-1). Body weight and basal glucose kinetics were not different between diet groups at 3, 5, or 8 wk. Glucose infusion rate (mg.kg-1.min-1) was not different between groups (3 wk: 17.7 +/- 1.6 ST, 16.6 +/- 0.9 SU; 5 wk: 16.1 +/- 0.9 ST, 15.1 +/- 2.0 SU; 8 wk: 18.3 +/- 1.9 ST, 16.1 +/- 1.5 SU). Clamp rate of glucose appearance (mg.kg-1.min-1) was also not different between diet groups (3 wk: 4.0 +/- 1.6 ST, 3.6 +/- 1.4 SU; 5 wk: 2.6 +/- 1.0 ST, 2.3 +/- 1.14 SU; 8 wk: 5.9 +/- 1.8 ST, 7.7 +/- 1.2 SU). No difference was observed in plasma and tissue triglycerides or tissue glycogen between sucrose- and starch-fed animals. We therefore conclude that female rats, in contrast to males, do not develop sucrose-induced insulin resistance and hypertriglyceridemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.