IntroductionThe intestinal protozoa Entamoeba histolytica, Giardia lamblia, and Cryptosporidium spp. are the causative agents of giardiasis, amebiasis, and cryptosporidiosis, respectively. Adequate knowledge of the geographical distribution of parasites and the demographic variables that influence their prevalence is important for effective control of infection in at-risk populations.MethodsThe data were obtained by an English language literature search of Medline and PubMed for papers using the search terms ‘intestinal parasites and Libya, G. lamblia and Libya, E. histolytica and Libya and Cryptosporidium and Libya’ for the period 2000–2015.ResultsThe data obtained for the period 2000–2015 showed prevalence rates of 0.8–36.6% (mean 19.9%) for E. histolytica/dispar, 1.2–18.2% (mean 4.6%) for G. lamblia and 0.9–13% (mean 3.4%) for Cryptosporidium spp. among individuals in Libya with gastroenteritis (GE). On the other hand, prevalence rates of 0.8–16.3% (mean 8.3%), 1.8–28.8% (mean 4.8%), and 1.0–2.5% (mean=2.4), respectively, were observed for individuals without GE. The mean prevalence rate of E. histolytica/dispar was significantly higher among individuals with GE compared with those without GE (p<0.0000001, OR=2.74). No significant difference in prevalence rate of the three organisms was found according to gender, but most of infections were observed in children aged 10 years or younger.ConclusionThe reviewed data suggest that E. histolytica, G. lamblia, and Cryptosporidium spp. may play a minor role in GE in Libya. The observed high prevalence rates of E. histolytica/dispar reported from Libya could be due mainly to the non-pathogenic E. dispar and E. moshkovskii. However, more studies are needed in the future using E. histolytica-specific enzyme immunoassays and/or molecular methods to confirm this observation.
Food-borne salmonellosis is a major manifestation of gastrointestinal disease in humans across the globe. Accurate and rapid identification methods could positively impact the identification of isolates, enhance outbreak investigation, and aid infection control. The SNaPshot multiplex system is a primer extension-based method that enables multiplexing of single nucleotide polymorphisms (SNPs). Here the method has been developed for the identification of five Salmonella serotypes, commonly detected in the United Kingdom, based on serotype-specific SNPs identified in the multilocus sequence typing (MLST) database of Salmonella enterica. The SNPs, in genes hemD, thrA, purE, and sucA, acted as surrogate markers for S. enterica serovars Typhimurium, Enteritidis, Virchow, Infantis, and Braenderup. The multiplex primer extension assay (MPEA) was conducted in two separate panels and evaluated using 152 Salmonella enterica isolates that were characterized by MLST. The MPEA was shown to be 100% specific and sensitive, within this collection of isolates. The MPEA is a sensitive and specific method for the identification and detection of Salmonella serotypes based upon SNPs seen in MLST data. The method can be applied in less than 6 h and has the potential to improve patient care and source tracing. The utility of the assay for identification of Salmonella serotypes directly from clinical specimens and food samples warrants further investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.