The results of this study indicate that the presence of plants did enhance TNT and TNB removal from IAAP groundwater. Most effective at 25 degrees C were reed canary grass, coontail and pondweed. Groundwater and plant tissue analyses indicate that in presence of the plants tested TNT is degraded to reduced by-products and to other metabolites that were not analyzed. TNT removal was best modeled using first order kinetics, with rate constants at 25 degrees C incubations ranging from 0.038 microgram L-1 h-1 for reed canary grass to 0.012 microgram L-1 h-1 for parrot-feather. These kinetics predict hydraulic retention times (HRTs) ranging from 4.9 days to 19.8 days to reach a TNT concentration of 2 micrograms L-1. Decreasing incubation temperature to 10 degrees C affected reed canary grass more than parrot-feather, increasing estimated HRTs by factors of four and two, respectively. The plant species tested showed a far lower potential for RDX removal from the IAAP groundwater. Most effective at 25 degrees C were reed canary grass and fox sedge. Analyses of plant material indicated the presence of RDX in under-water plant portions and in aerial plant portions, and RDX accumulation in the latter. RDX removal was best modeled using zero order kinetics, with rate constants for the 25 degrees C incubation ranging from 13.45 micrograms L-1 h-1 for reed canary grass to no removal in four species. Based on these kinetics, estimated HRTs to reach 2 micrograms L-1 RDX increased from 39 days. Decreasing the temperature to 10 degrees C increased HRT 24-fold for reed canary grass. By using the biomass-normalized K value, submersed plants are identified as having the highest explosives-removing activity (microgram explosive L-1 h-1 g DW-1). However, biomass production of submersed plants is normally five to ten times less than that of emergent plants per unit area, and, thus, in plant selection for wetland construction, both, explosives removal potential and biomass production are important determinants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.