Introduction-Neuroimaging and lesion studies indicate a left hemisphere network for verb and verb argument structure processing, involving both frontal and temporoparietal brain regions. Although their verb comprehension is generally unimpaired, it is well known that individuals with agrammatic aphasia often present with verb production deficits, characterized by an argument structure complexity hierarchy, indicating faulty access to argument structure representations for production and integration into syntactic contexts. Recovery of verb processing in agrammatism, however, has received little attention and no studies have examined the neural mechanisms associated with improved verb and argument structure processing. In the present study we trained agrammatic individuals on verbs with complex argument structure in sentence contexts and examined generalization to verbs with less complex argument structure. The neural substrates of improved verb production were examined using functional magnetic resonance imaging (fMRI).Methods-Eight individuals with chronic agrammatic aphasia participated in the study (four experimental and four control participants). Production of three-argument verbs in active sentences was trained using a sentence generation task emphasizing the verb's argument structure and the thematic roles of sentential noun phrases. Before and after training, production of trained and untrained verbs was tested in naming and sentence production and fMRI scans were obtained, using an action naming task.Results-Significant pre-to post-training improvement in trained and untrained (one-and twoargument) verbs was found for treated, but not control, participants, with between-group differences found for verb naming, production of verbs in sentences, and production of argument structure. fMRI activation derived from post-treatment compared to pre-treatment scans revealed upregulation in cortical regions implicated for verb and argument structure processing in healthy controls. Conclusions-Training verb deficits emphasizing argument structure and thematic role mapping is effective for improving verb and sentence production and results in recruitment of neural networks engaged for verb and argument structure processing in healthy individuals.
Background-Acquired deep dyslexia is characterized by impairment in grapheme-phoneme conversion and production of semantic errors in oral reading. Several theories have attempted to explain the production of semantic errors in deep dyslexia, some proposing that they arise from impairments in both grapheme-phoneme and lexical-semantic processing, and others proposing that such errors stem from a deficit in phonological production. Whereas both views have gained some acceptance, the limited evidence available does not clearly eliminate the possibility that semantic errors arise from a lexical-semantic input processing deficit.
Background
Individuals with acquired phonological dyslexia experience difficulty associating written letters with corresponding sounds, especially in pseudowords. Previous studies have shown that reading can be improved in these individuals by training letter-sound correspondence, practicing phonological skills, or using combined approaches. However, generalization to untrained items is typically limited.
Aims
We investigated whether principles of phonological complexity can be applied to training letter-sound correspondence reading in acquired phonological dyslexia to improve generalization to untrained words. Based on previous work in other linguistic domains, we hypothesized that training phonologically “more complex” material (i.e., consonant clusters with small sonority differences) would result in generalization to phonologically “less complex” material (i.e., consonant clusters with larger sonority differences), but this generalization pattern would not be demonstrated when training the “less complex” material.
Methods & Procedures
We used a single-participant, multiple baseline design across participants and behaviors to examine phonological complexity as a training variable in five individuals. Based on participants' error data from a previous experiment, a “more complex” onset and a “less complex” onset were selected for training for each participant. Training order assignment was pseudo-randomized and counterbalanced across participants. Three participants were trained in the “more complex” condition and two in the “less complex” condition while tracking oral reading accuracy of both onsets.
Outcomes & Results
As predicted, participants trained in the “more complex” condition demonstrated improved pseudoword reading of the trained cluster and generalization to pseudowords with the untrained, “simple” onset, but not vice versa.
Conclusions
These findings suggest phonological complexity can be used to improve generalization to untrained phonologically related words in acquired phonological dyslexia. These findings also provide preliminary support for using phonological complexity theory as a tool for designing more effective and efficient reading treatments for acquired dyslexia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.