Background:Studies on nurse competence on alarm management are a few and tend to be focused on limited skills. In response to Phase II of implementing the National Patient Safety Goal on clinical alarm systems safety, this study assessed nurses’ perceived competence on physiologic monitors use in intensive care units (ICUs) and developed and validated a tool for this purpose.Methods:This descriptive study took place in a Magnet hospital in a Southwestern state of the U.S. A Nurse Competence on Philips Physiologic Monitors Use Survey was created and went through validation by 13 expert ICU nurses. The survey included 5 subscales with 59 rated items and two open-ended questions. Items on the first 4 subscales reflect most common tasks nurses perform using physiologic monitors. Items on the fifth subscale (advanced functions) reflect rarely used skills and were included to understand the scope of utilizing advanced physiologic monitors’ features. Thirty nurses from 4 adult ICUs were invited to respond to the survey.Results:Thirty nurses (100%) responded to the survey. The majority of nurses were from Neuro (47%) and Surgical Trauma (37%) ICUs. The data supported the high reliability and construct validity of the survey. At least one (3%) to 8 nurses (27%) reported lack of confidence on each item on the survey. On the first four subscales, 3% - 40% of the nurses reported they had never heard of or used 27 features/functions on the monitors. No relationships were found between subscales’ scores and demographic characteristics (p > .05). Nurses asked for training on navigating the central-station monitor and troubleshooting alarms, and the use of unit-specific super users to tailor training to users’ needs.Conclusion:This is the first study to create and test a list of competencies for physiologic monitors use. Rigorous, periodic and individualized training is essential for safe and appropriate use of physiologic monitors and to decrease alarm fatigue. Training should be comprehensive to include all necessary skills and should not assume proficiency on basic skills. Special attention should be focused on managing technical alarms. Increasing the number of super users is a recommended strategy for individualized and unit-specific training. There is a need for a usability testing of complex IT-equipped medical devices, such as physiologic monitors, for effective, efficient and safe navigation of the monitors.
Background Clinical alarm system safety is a national patient safety goal in the United States. Physiologic monitors are associated with the highest number of device alarms and alarm-related deaths. However, research involving nurses’ use of physiologic monitors is rare. Hence, the identification of critical usability issues for monitors, especially those related to patient safety, is a nursing imperative. Objective This study examined nurses’ usability of physiologic monitors in intensive care units with respect to the effectiveness and efficiency of monitor use. Methods In total, 30 nurses from 4 adult intensive care units completed 40 tasks in a simulation environment. The tasks were common monitoring tasks that were crucial for appropriate monitoring and safe alarm management across four categories of competencies: admitting, transferring, and discharging patients using the monitors (7 tasks); managing measurements and monitor settings (23 tasks); performing electrocardiogram (ECG) analysis (7 tasks); and troubleshooting alarm conditions (3 tasks). The nurse-monitor interaction was video-recorded. The principal investigator and two expert intensive care units nurse educators identified, classified, and validated task success (effectiveness) and the time of task completion (efficiency). Results Among the 40 tasks, only 2 (5%) were successfully completed by all the nurses. At least 1-27 (3%-90%) nurses abandoned or did not correctly perform 38 tasks. The task with the shortest completion time was “take monitor out of standby” (mean 0:02, SD 0:01 min:s), whereas the task “record a 25 mm/s ECG strip of any of the ECG leads” had the longest completion time (mean 1:14, SD 0:32 min:s). The total time to complete 37 navigation-related tasks ranged from a minimum of 3 min 57 s to a maximum of 32 min 42 s. Regression analysis showed that it took 6 s per click or step to successfully complete a task. To understand the nurses’ thought processes during monitor navigation, the authors analyzed the paths of the 2 tasks with the lowest successful completion rates, where only 13% (4/30) of the nurses correctly completed these 2 tasks. Although 30% (9/30) of the nurses accessed the correct screen first for task 1 and task 2, they could not find their way easily from there to successfully complete the 2 tasks. Conclusions Usability testing of physiologic monitors revealed major ineffectiveness and inefficiencies in the current nurse-monitor interactions. The results indicate the potential for safety and productivity issues in completing routine tasks. Training on monitor use should include critical monitoring functions that are necessary for safe, effective, efficient, and appropriate monitoring to include knowledge of the shortest navigation path. It is imperative that vendors’ future monitor designs mimic clinicians’ thought processes for successful, safe, and efficient monitor navigation.
BACKGROUND Clinical alarm system safety is a national patient safety goal in the United States. Physiologic monitors are associated with the highest number of device alarms and alarm-related deaths. However, research involving nurses’ use of physiologic monitors is rare. Hence, the identification of critical usability issues for monitors, especially those related to patient safety, is a nursing imperative. OBJECTIVE This study examined nurses’ usability of physiologic monitors in intensive care units with respect to the effectiveness and efficiency of monitor use. METHODS In total, 30 nurses from 4 adult intensive care units completed 40 tasks in a simulation environment. The tasks were common monitoring tasks that were crucial for appropriate monitoring and safe alarm management across four categories of competencies: admitting, transferring, and discharging patients using the monitors (7 tasks); managing measurements and monitor settings (23 tasks); performing electrocardiogram (ECG) analysis (7 tasks); and troubleshooting alarm conditions (3 tasks). The nurse-monitor interaction was video-recorded. The principal investigator and two expert intensive care units nurse educators identified, classified, and validated task success (effectiveness) and the time of task completion (efficiency). RESULTS Among the 40 tasks, only 2 (5%) were successfully completed by all the nurses. At least 1-27 (3%-90%) nurses abandoned or did not correctly perform 38 tasks. The task with the shortest completion time was “take monitor out of standby” (mean 0:02, SD 0:01 min:s), whereas the task “record a 25 mm/s ECG strip of any of the ECG leads” had the longest completion time (mean 1:14, SD 0:32 min:s). The total time to complete 37 navigation-related tasks ranged from a minimum of 3 min 57 s to a maximum of 32 min 42 s. Regression analysis showed that it took 6 s per click or step to successfully complete a task. To understand the nurses’ thought processes during monitor navigation, the authors analyzed the paths of the 2 tasks with the lowest successful completion rates, where only 13% (4/30) of the nurses correctly completed these 2 tasks. Although 30% (9/30) of the nurses accessed the correct screen first for task 1 and task 2, they could not find their way easily from there to successfully complete the 2 tasks. CONCLUSIONS Usability testing of physiologic monitors revealed major ineffectiveness and inefficiencies in the current nurse-monitor interactions. The results indicate the potential for safety and productivity issues in completing routine tasks. Training on monitor use should include critical monitoring functions that are necessary for safe, effective, efficient, and appropriate monitoring to include knowledge of the shortest navigation path. It is imperative that vendors’ future monitor designs mimic clinicians’ thought processes for successful, safe, and efficient monitor navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.