This review summarizes recent highlights of our joint work on the structure, evolution, and function of a family of highly complex proteins, the hemocyanins. They are blue-pigmented oxygen carriers, occurring freely dissolved in the hemolymph of many arthropods and molluscs. They are copper type-3 proteins and bind one dioxygen molecule between two copper atoms in a side-on coordination. They possess between 6 and 160 oxygen-binding sites, and some of them display the highest molecular cooperativity observed in nature. The functional properties of hemocyanins can be convincingly described by either the Monod-Wyman-Changeux (MWC) model or its hierarchical extension, the Nested MWC model; the latter takes into account the structural hierarchies in the oligomeric architecture. Recently, we applied these models to interpret the influence of allosteric effectors in detailed terms. Effectors shift the allosteric equilibria but have no influence on the oxygen affinities characterizing the various conformational states. We have shown that hemocyanins from species living at different environmental temperatures have a cooperativity optimum at the typical temperature of their natural habitat. Besides being oxygen carriers, some hemocyanins function as a phenoloxidase (tyrosinase/catecholoxidase) which, however, requires activation. Chelicerates such as spiders and scorpions lack a specific phenoloxidase, and in these animals activated hemocyanin might catalyse melanin synthesis in vivo. We propose a similar activation mechanism for arthropod hemocyanins, molluscan hemocyanins and tyrosinases: amino acid(s) that sterically block the access of phenolic compounds to the active site have to be removed. The catalysis mechanism itself can now be explained on the basis of the recently published crystal structure of a tyrosinase. In a series of recent publications, we presented the complete gene and primary structure of various hemocyanins from different molluscan classes. From these data, we deduced that the molluscan hemocyanin molecule evolved ca. 740 million years ago, prior to the separation of the extant molluscan classes. Our recent advances in the 3D cryo-electron microscopy of hemocyanins also allow considerable insight into the oligomeric architecture of these proteins of high molecular mass. In the case of molluscan hemocyanin, the structure of the wall and collar of the basic decamers is now rapidly becoming known in greater detail. In the case of arthropod hemocyanin, a 10-Å structure and molecular model of the Limulus 8 × 6mer shows the amino acids at the various interfaces between the eight hexamers, and reveals histidine-rich residue clusters that might be involved in transferring the conformational signals establishing cooperative oxygen binding.
Phenoloxidase, widely distributed among animals, plants, and fungi, is involved in many biologically essential functions including sclerotization and host defense. In chelicerates, the oxygen carrier hemocyanin seems to function as the phenoloxidase. Here, we show that hemocyanins from two ancient chelicerates, the horseshoe crab Limulus polyphemus and the tarantula Eurypelma californicum, exhibit O-diphenoloxidase activity induced by submicellar concentrations of SDS, a reagent frequently used to identify phenoloxidase activity. The enzymatic activity seems to be restricted to only a few of the heterogeneous subunits. These active subunit types share similar topological positions in the quaternary structures as linkers of the two tightly connected 2 ؋ 6-mers. Because no other phenoloxidase activity was found in the hemolymph of these animals, their hemocyanins may act as a phenoloxidase and thus be involved in the primary immune response and sclerotization of the cuticle. In contrast, hemolymph of a more recent arthropod, the crab Cancer magister, contains both hemocyanin with weak phenoloxidase activity and another hemolymph protein with relatively strong phenoloxidase activity. The chelicerate hemocyanin subunits showing phenoloxidase activity may have evolved into a separate phenoloxidase in crustaceans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.