BackgroundEvery surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction.MethodsIn rabbits we placed single polypropylene sutures (3/0) in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content.ResultsWe identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016). The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026).ConclusionsKnotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.
The combination of radiofrequency ablation (RFA) with direct current (DC) is a promising strategy to improve the efficiency of RFA. However, DC-enhanced monopolar RFA is limited by electrolytic injury at the positive-electrode site. The aim of this study was to investigate the feasibility of the DC-enhanced bipolar RFA. To obviate the need for the subcutaneous positive electrode, the DC circuit was combined with a commercially available bipolar RFA system, in which both poles of the DC circuit are connected to a single RF probe. DC was applied for 15 min and followed by RFA in bovine livers using the following various DC currents: (1) no DC (control), (2) 3V continued until the end of RFA, (3) 5V continued until the end of RFA, (4) 10V continued until the end of RFA, (5) 5V continued in the circuit with reversed pole, (6) 3V stopped after initiation of RFA, and (7) 5V stopped. Coagulation volume, temperatures at a distance of 5, 10, and 15 mm from the RF probe, mean amperage, ablation duration, applied energy, minimum impedance, and degree of tissue charring were assessed and compared (analysis of variance, Student-Newman-Keuls test). All combined DC and RFA groups did increase coagulation volume. The 10V continued group showed significantly lower applied energy, shortest ablation duration, highest minimum impedance, and highest degree of charring with the lowest coagulation volume (p<0.05). DC-enhanced bipolar RFA with both poles of the DC circuit on a single probe appears to be ineffective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.