Expression of the rat CD8 molecule was studied using five novel monoclonal antibodies (mAb), four of which are specific for the V-like domain of CD8 alpha, whereas one reacts either with the beta chain or with a determinant only expressed on the CD8 alpha/beta heterodimer. mAb to both chains effectively blocked purified lymph node CD8 T cells in mixed lymphocyte reaction and in cell-mediated cytotoxicity. Flow cytometric analysis showed that CD8 T cells from lymph nodes or spleen of normal rats almost exclusively express the alpha/beta isoform, regardless of the T cell receptor isotype (alpha/beta or gamma/delta). In contrast, natural killer (NK) cells carry only CD8 alpha chains. This CD8 alpha + beta - phenotype was also prominent among CD8 T cells from athymic rats and from intestinal epithelium of normal rats. CD8 alpha homodimers can also be expressed as a result of activation, as shown by analysis of CD4 CD8 double-positive T cells obtained from highly purified lymph node CD4 T cells by in vitrok stimulation. Such CD4+CD8 alpha + beta - cells also represent a major subset among adult intestinal intraepithelial lymphocytes (IEL), suggesting local activation. Taken together, the difference in CD8 isoform expression among T cells from athymic rats, NK cells, and gut IEL versus CD8 T cells from peripheral lymphatic organs of euthymic animals suggests that like in mice, expression of the CD8 heterodimer is more dependent on intrathymic maturation than that of the homodimer. Since the more stringent thymus dependence of CD8 alpha + beta + T cells may be due to a requirement for thymic selection on self major histocompatibility complex class I antigens, the virtually exclusive CD8 alpha + beta + phenotype of peripheral rat gamma/delta T cells could mean that antigen recognition by this subset is also restricted by MHC class I molecules.
An intracellular staining procedure for the cytoskeletal marker, glial fibrillary acidic protein of astrocytes, has been developed which allows flow cytometric phenotyping of astrocytes within complex mixttires of glial cells. Employing this technique, we show here that measles virus infection of rat mixed gl.ial cell cultures results in a rapid augmentation of major histocompatibility complex (MHC) dass I and ICAM-1 on the majority of astrocytes in culture. MHC class I Ievels are increased on macrophages/microglia but ICAM-1 expression is not normally affected on this cell type. Some MHC dass II induction is also observed after virus infection but only on astrocytes. A type-I interferon (IFN)-inducible protein, Mx, was identified in cultured glial cells after infection. Qualitatively comparable MHC dass I and ICAM-1 enhancement after addition of type-I IFN, supports the conclusion that this cytokine(s) releasedas a result ofvirus infection, is responsible for alterations in the expression of molecules on glial cells, that are involved in T cell recognition. Astrocytes after viral infection were more susceptible to alloantigen-specific cytotoxic T lymphocytes and cytotoxic T lymphocyte activity was substantially reduced in the presence of mAb specific for MHC class I, ICAM-1 and LFA-1 but not MHC dass II. The relevance of these findings toT cell recognition of virus-infected cells in the centrat nervaus system is discussed.
The cytolytic activity of human and mouse natural killer (NK) cells is negatively regulated by self major histocompatibility complex (MHC) class I molecules on potential target cells. In the rat, protection by RT1 class I gene products has so far not been formally shown although the complex effects of foreign and self RT1 genes on polyclonal NK cell activity suggest that MHC recognition can have both stimulatory and inhibitory effects. Here we report that the expression of self-MHC class I molecules on target cells strongly inhibits lysis by a long term NK cell line derived from LEW (RT1l) rats and by LEW NK cells activated by short-term culture in the presence of interleukin-2. This was demonstrated with mouse-rat hybridoma target cells expressing different rat MHC alleles and with mouse tumor target cells transfected with classical (RT1.Al) and nonclassical (RT1.Cl) rat MHC class I genes. With hybridoma target cells, the strongest reduction in lysis as compared to the parental mouse myeloma line was observed when "self" (LEW) MHC was expressed, while hybridomas expressing other MHC alleles showed less and variable reduction. Transfection of RT1.Al protected both L-929 fibroblasts and P815 mastocytoma cells from lysis by the NK cell line, while RT1.Cl only protected P815 cells, indicating that additional target cell properties regulate rat NK cell activity.
The value of high affinity-specific reagents in immunology is exemplified by the use of mAbs. Recent in vitro selection methods suggested that oligonucleotides may provide a useful alternative, especially where Abs have been insufficient thus far. We used a systematic evolution of ligands by exponential enrichment (SELEX) procedure to derive high affinity oligonucleotide ligands (aptamers) recognizing CD4. These RNase-resistant aptamers bound with high affinity and specificity as demonstrated using BIAcore (Stevenage, U.K.) technology. They also bound native CD4 on rat lymphocytes and specifically interfered with labeling by high affinity mAbs. All aptamers recognized the same binding site in the CDR2-like region in domain 1 of CD4. The applicability of these aptamers for immunologic studies was clearly demonstrated by their ability to block a fully allogeneic MLR in a CD4-specific manner. The high affinity and stability of aptamers point to their value in the analysis and functional manipulation of the immune system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.