Measurements of the self-diffusion coefficient in supercooled~ater to 300 MPa are reported. Translational diffusion in liquid water at 243 K is enhanced by 60% when the pressure is increased from 0.1 to 150 MPa, and rotational diffusion is enhanced by almost 250% between 0.1 and 250 MPa. These strik- The relation between T, and TH shown in Fig. 1
Measurements of self-diffusion coefficients
BackgroundMicroRNA-mediated control of gene expression via translational inhibition has substantial impact on cellular regulatory mechanisms. About 37% of mammalian microRNAs appear to be located within introns of protein coding genes, linking their expression to the promoter-driven regulation of the host gene. In our study we investigate this linkage towards a relationship beyond transcriptional co-regulation.ResultsUsing measures based on both annotation and experimental data, we show that intronic microRNAs tend to support their host genes by regulation of target gene expression with significantly correlated expression patterns. We used expression data of three differentiating cell types and compared gene expression profiles of host and target genes. Many microRNA target genes show expression patterns significantly correlated with the expressions of the microRNA host genes. By calculating functional similarities between host and predicted microRNA target genes based on GO annotations, we confirm that many microRNAs link host and target gene activity in an either synergistic or antagonistic manner.ConclusionsThese two regulatory effects may result from fine tuning of target gene expression functionally related to the host or knock-down of remaining opponent target gene expression. This finding allows to extend the common practice of mapping large scale gene expression data to protein associated genes with functionality of co-expressed intronic microRNAs.
This short survey the reviews recent literature on brain connectivity studies. It encompasses all forms of static and dynamic connectivity whether anatomical, functional, or effective. The last decade has seen an ever increasing number of studies devoted to deduce functional or effective connectivity, mostly from functional neuroimaging experiments. Resting state conditions have become a dominant experimental paradigm, and a number of resting state networks, among them the prominent default mode network, have been identified. Graphical models represent a convenient vehicle to formalize experimental findings and to closely and quantitatively characterize the various networks identified. Underlying these abstract concepts are anatomical networks, the so-called connectome, which can be investigated by functional imaging techniques as well. Future studies have to bridge the gap between anatomical neuronal connections and related functional or effective connectivities.
Water at low temperatures (T< 300 K) reveals a multitude of unusual physico-chemical properties, which originate from the strong directivity of the hydrogen bonds. This directivity forces the molecules into a tetrahedral arrangement of first neighbors and thus leads to a poor packing efficiency. All anomalies of the liquid become more pronounced in the metastable range below the melting pressure curve. In the following article, methods for the investigation of the supercooled range are presented. A few anomalous static and dynamic properties are described and compared with the properties of normal liquids. The experimental results are discussed in the context of computer simulations and the more recent theories on cold water. It can be concluded that the anomalies of water, for instance the density maximum of the liquid phase and the initial decrease in viscosity with pressure, are confined to the pT-range: T < 300 K, p 5 200 MPa. At these pressures, lowering the temperature leads to an unexpected behavior of almost all physical properties. They seem to approach a phase transition at T = (TM -50 K), the nature of which has not yet been fully characterized. This phenomenon has hitherto been observed only in supercooled water. -In the future it will be possible to use supercooled aqueous solutions for kinetic studies, thus expanding the available dynamic range for the investigation of aqueous solutions considerably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.