The pion electromagnetic form factor at spacelike momentum transfer is calculated in relativistic impulse approximation using the Covariant Spectator Theory. The same dressed quark mass function and the equation for the pion bound-state vertex function as discussed in the companion paper are used for the calculation, together with a dressed quark current that satisfies the Ward-Takahashi identity. The results obtained for the pion form factor are in agreement with experimental data, they exhibit the typical monopole behavior at high-momentum transfer, and they satisfy some remarkable scaling relations.
Point-form relativistic quantum mechanics is used to derive an expression for the electromagnetic form factor of a pseudoscalar meson for spacelike momentum transfers. The elastic scattering of an electron by a confined quark-antiquark pair is treated as a relativistic two-channel problem for the qqe and qqeγ states. With the approximation that the total velocity of the qqe system is conserved at (electromagnetic) interaction vertices this simplifies to an eigenvalue problem for a Bakamjian-Thomas type mass operator. After elimination of the qqeγ channel the electromagnetic meson current and form factor can be directly read off from the one-photon-exchange optical potential. By choosing the invariant mass of the electron-meson system large enough, cluster separability violations become negligible. An equivalence with the usual front-form expression, resulting from a spectator current in the q + = 0 reference frame, is established. The generalization of this multichannel approach to electroweak form factors for an arbitrary bound few-body system is quite obvious. By an appropriate extension of the Hilbert space this approach is also able to accommodate exchange-current effects.
The relativistic point-form formalism which we proposed for the study of the electroweak structure of few-body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the ρ, within constituent-quark models. We treat electron-meson scattering as a Poincaré-invariant coupled-channel problem for a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious contributions in the current. These contributions, however, can be separated unambiguously from the physical ones and we end up with a meson current with all required properties. Numerical results for the ρ-meson form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison with other approaches reveals a remarkable agreement of our results with those obtained within the covariant light-front scheme proposed by Carbonell et al.
This short review summarizes recent developments and results in connection with point-form dynamics of relativistic quantum systems. We discuss a Poincare invariant multichannel formalism which describes particle production and annihilation via vertex interactions that are derived from field theoretical interaction densities. We sketch how this rather general formalism can be used to derive electromagnetic form factors of confined quark-antiquark systems. As a further application it is explained how the chiral constituent quark model leads to hadronic states that can be considered as bare hadrons dressed by meson loops. Within this approach hadron resonances acquire a finite (non-perturbative) decay width. We will also discuss the point-form dynamics of quantum fields. After recalling basic facts of the free-field case we will address some quantum field theoretical problems for which canonical quantization on a space-time hyperboloid could be advantageous.Comment: 16 pages, 3 figures, Mini review base on talks given by W.H. Klink and W. Schweiger at the workshop on "Relativistic Description of Two- and Three-Body Systems in Nuclear Physics", ECT* Trento, October 19-13, 200
The π-π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST π-π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for π-π scattering in the chiral limit emerges as the result for this sum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.