IntroductionLoad variation is associated with changes in joint torque and compensatory reflex activation and thus, has a considerable impact on balance control. Previous studies dealing with over (OL) and under loading (UL) used water buoyancy or additional weight with the side effects of increased friction and inertia, resulting in substantially modified test paradigms. The purpose of this study was to identify gravity-induced load dependency of postural control in comparable experimental conditions and to determine the underlying neuromuscular mechanisms.MethodsBalance performance was recorded under normal loading (NL, 1g), UL (0.16g; 0.38g) and OL (1.8g) in monopedal stance. Center of pressure (COP) displacement and frequency distribution (low 0.15-0.5Hz (LF), medium 0.5-2Hz (MF), high 2-6Hz (HF)) as well as ankle, knee and hip joint kinematics were assessed. Soleus spinal excitability was determined by H/M-recruitment curves (H/M-ratios).ResultsCompared to NL, OL caused an increase in ankle joint excursion, COP HF domain and H/M-ratio. Concomitantly, hip joint excursion and COP LF decreased. Compared to NL, UL caused modulations in the opposite direction: UL decreased ankle joint excursions, COP HF and H/M-ratio. Collaterally, hip joint excursion and COP LF increased. COP was augmented both in UL and in OL compared to NL.ConclusionSubjects achieved postural stability in OL and UL with greater difficulty compared to NL. Reduced postural control was accompanied by modified balance strategies and compensatory reflex activation. With increasing load, a shift from hip to ankle strategy was observed. Accompanying, COP frequency distribution shifted from LF to HF and spinal excitability was enhanced. It is suggested that in OL, augmented ankle joint torques are compensated by quick reflex-induced postural reactions in distal muscles. Contrarily, UL is associated with diminished joint torques and thus, postural equilibrium may be controlled by the proximal segments to adjust the center of gravity above the base of support.
Deficits in trunk control are argued to increase the risk of knee injuries. However, no existing training program effectively addresses trunk control during lateral movements, such as cutting maneuvers. The purpose of this study was to investigate whether a combination of perturbation and plyometric training (PPT) would reduce trunk excursions against the new movement direction and reduce knee joint moments during lateral movements. Twenty-four active women participated in a RCT, where trunk and pelvis kinematics and knee joint moments were measured during lateral reactive jumps (LRJ) and unanticipated cutting maneuvers before and after a 4-week PPT program and compared to a control group. During LRJ, trunk rotation away from the new movement direction was reduced (P < 0.001), while pelvis rotation toward the new direction was increased (P = 0.006) after PPT. Moreover, decreased knee extension moments (P = 0.028) and knee internal rotation moments (P < 0.001) were reported after both trainings. Additionally, PPT reduced trunk rotation by 7.2° during unanticipated cuttings. A 4-week PPT improved core control by reducing trunk rotation and reduced knee joint moments during LRJ. During training, perturbations should be introduced to improve core control during dynamic athletic movements, possibly reducing the risk of ACL injuries.
This study investigates gender differences in lateral trunk lean to confound possible associations with hip and knee joint biomechanics during lateral reactive jumps. Twelve female and 12 male athletes performed lateral reactive jumps while three-dimensional knee, hip and trunk kinematics as well as ground reaction forces and electromyography of selected thigh muscles were recorded. Lateral trunk lean did not differ between genders, while females had greater knee valgus angle than males (-4.9 ± 3.9° vs. 1.6 ± 3.2°, p = 0.001). A significant association between the lateral trunk lean and the hip abduction moment (r = 0.55) was found. Moreover, lateral trunk lean and knee abduction moment showed a significant relationship (r = 0.67). The positive association between trunk lean and knee abduction moment suggests that higher lateral trunk lean may increase the risk of knee injury during lateral movements and that the trunk should be trained accordingly in team sports.
In lateral reactive movements, core stability may influence knee and hip joint kinematics and kinetics. Insufficient core stabilisation is discussed as a major risk factor for anterior cruciate ligament (ACL) injuries. Due to the higher probability of ACL injuries in women, this study concentrates on how gender influences trunk, pelvis and leg kinematics during lateral reactive jumps (LRJs). Perturbations were investigated in 12 men and 12 women performing LRJs under three different landing conditions: a movable landing platform was programmed to slide, resist or counteract upon landing. Potential group effects on three-dimensional trunk, pelvic, hip and knee kinematics were analysed for initial contact (IC) and the time of peak pelvic medial tilt (PPT). Regardless of landing conditions, the joint excursions in the entire lower limb joints were gender-specific. Women exhibited higher trunk left axial rotation at PPT (women: 4.0 ± 7.5°, men: -3.1 ± 8.2°; p = 0.011) and higher hip external rotation at both IC and PPT (p < 0.01). But women demonstrated higher knee abduction compared to men. Men demonstrated more medial pelvic tilt at IC and especially PPT (men: -5.8 ± 4.9°, women: 0.3 ± 6.3°; p = 0.015). Strategies for maintaining trunk, pelvis and lower limb alignment during lateral reactive movements were gender-specific; the trunk and hip rotations displayed by the women were associated with the higher knee abduction amplitudes and therefore might reflect a movement strategy which is associated with higher injury risk. However, training interventions are needed to fully understand how gender-specific core stability strategies are related to performance and knee injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.