Glucagon-like peptide 1 (GLP-1) is a physiological stimulus of pancreatic beta-cell function. This enteroendocrine hormone is produced by intestinal L cells, and is delivered via the bloodstream to GLP-1 receptors (GLP-1Rs) on pancreatic beta-cells. In addition, there is evidence that beta-cell GLP-1Rs maintain sustained basal activity even in the absence of intestinal peptide, an observation that has raised the question whether these receptors have some degree of ligand-independent function. Here, we provide an alternative explanation for basal receptor activity based on our finding that biologically relevant amounts of fully processed GLP-1 are locally generated by insulinoma cell lines, as well as by alpha-cells of isolated rat islets in primary culture. Presence of GLP-1 was established by immunocytochemistry, as well as by selective ELISAs and bioassays of cell supernatants. A GLP-1R antagonist significantly reduced insulin secretion/production in beta-TC-6 insulinoma cells and isolated rat islets, suggesting a functionally important loop between locally produced GLP-1 and its cognate receptor. Treatment with this antagonist also inhibited the growth of beta-TC-6 cells. These observations provide novel insight into the function of insulin-producing cell lines and native beta-cells during in vitro culture, and they support the idea that locally produced GLP-1 may play a role in intra-islet regulation.
The glucagon-like peptide 1 receptor (GLP-1R) belongs to a distinct subgroup of G protein-coupled peptide hormone receptors (class B) that has been difficult to target by small molecule drugs. Here, we report that a non-peptide compound, T-0632, binds with micromolar affinity to the human GLP-1R and blocks GLP-1-induced cAMP production. Furthermore, the observation that T-0632 has almost 100-fold selectivity for the human versus the highly homologous rat GLP-1R provided an opportunity to map determinants of non-peptide binding. Radioligand competition experiments utilizing a series of chimeric human/rat GLP-1R constructs revealed that partial substitution of the amino terminus of the rat GLP-1R with the corresponding sequence from the human homolog was sufficient to confer high T-0632 affinity. Follow-up analysis of receptors where individual candidate amino acids had been exchanged between the human and rat GLP-1Rs identified a single residue that explained species selectivity of non-peptide binding. Replacement of tryptophan 33 in the human GLP-1R by serine (the homologous amino acid in the rat GLP-1R) resulted in a 100-fold loss of T-0632 affinity, whereas the converse mutation in the rat GLP-1R led to a reciprocal gain-of-function phenotype. These observations suggest that in a class B receptor, important determinants of non-peptide affinity reside within the extracellular amino-terminal domain. Compound T-0632 may mimic, and thereby interfere with, the putative "pseudo-tethering" mechanism by which the amino terminus of class B receptors initiates the binding of cognate hormones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.