BackgroundThe use of composites in dental restoration has been commonly criticized, due to their underwhelming mechanical properties. This problem may be solved partially by preheating. The present research aims to determine the effect of preheating on the mechanical properties of two different classes of composites. Material and Methods A Silorane-based (Silorane) and a Methacrylate-based (Z250) composite were preheated to different temperatures (25, 37, and 68 °C) and afterwards were tested with the appropriate devices for each testing protocol. The material’s flexural strength, elastic modulus, and Vickers microhardness were evaluated. Two-way ANOVA, and Tukey’s post hoc were used to analyze the data. Results Microhardness and elastic modulus increased with preheating, while flexural strength values did not increase significantly with preheating. Furthermore the methacrylate-based composite (Z250) showed higher values compared to the Silorane-based composite (Silorane) in all the tested properties. Conclusions Preheating Silorane enhances the composite’s microhardness and elastic modulus but does not affect its flexural strength. On the other hand, preheating Z250 increases its microhardness but does not change its flexural strength or elastic modulus. In addition, the Z250 composite shows higher microhardness and flexural strength than Silorane, but the elastic modulus values with preheating are similar. Therefore Z250 seems to have better mechanical properties making it the better choice in a clinical situation.
Key words:Composite, elastic modulus, flexural strength, microhardness, preheating.
Objectives: Several adhesive systems are available for cementation of fibre posts into the root canal. The aim of the present study was to investigate the push-out bond strengths of quartz fibre posts to root dentin with the use of different total-etch and self-adhesive resin cements.
Study Design: Ninety single-rooted human premolars were endodontically treated and standardized post-spaces were prepared. Fibre posts were cemented with different luting agents: total-etch (Nexus NX3, Duo-Link, and RelyX ARC) and self-adhesive resin cements (Maxcem Elite, BisCem, and RelyX Unicem). Three post/dentin sections (coronal, middle and apical) were obtained from each specimen, and push-out bond strength test was performed in each section at a cross-head speed of 0.5 mm/min. Data was analyzed with two-factor and one-way analysis of variance and a post-hoc Tukey test at a significance level of p < 0.05.
Results: Cement type, canal region, and their interaction significantly influenced bond strength. Significantly higher bond strength values were observed in the apical region of self-adhesive cements. Only Duo-Link and RelyX ARC cements resulted in homogeneous bond strengths.
Conclusions: Cementation of quartz fibre posts using self-adhesive cements provided higher push-out bond strengths especially in the apical region, while total-etch cements resulted in more uniform bond strengths in different regions of the root canal.
Key words: Push-out bond strength; quartz fibre post; total-etch resin cement; self-adhesive resin cement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.