In response to the volume and sophistication of malicious software or malware, security investigators rely on dynamic analysis for malware detection to thwart obfuscation and packing issues. Dynamic analysis is the process of executing binary samples to produce reports that summarise their runtime behaviors. The investigator uses these reports to detect malware and attribute threat type leveraging manually chosen features. However, the diversity of malware and the execution environments makes manual approaches not scalable because the investigator needs to manually engineer fingerprinting features for new environments. In this paper, we propose, MalDy (mal die), a portable (plug and play) malware detection and family threat attribution framework using supervised machine learning techniques. The key idea of MalDy of portability is the modeling of the behavioral reports into a sequence of words, along with advanced natural language processing (NLP) and machine learning (ML) techniques for automatic engineering of relevant security features to detect and attribute malware without the investigator intervention. More precisely, we propose to use bag-of-words (BoW) NLP model to formulate the behavioral reports. Afterward, we build ML ensembles on top of BoW features. We extensively evaluate MalDy on various datasets from different platforms (Android and Win32) and execution environments. The evaluation shows the effectiveness and the portability MalDy across the spectrum of the analyses and settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.