Recently, interest in Internet of Vehicles’ (IoV) technologies has significantly emerged due to the substantial development in the smart automobile industries. Internet of Vehicles’ technology enables vehicles to communicate with public networks and interact with the surrounding environment. It also allows vehicles to exchange and collect information about other vehicles and roads. IoV is introduced to enhance road users’ experience by reducing road congestion, improving traffic management, and ensuring the road safety. The promised applications of smart vehicles and IoV systems face many challenges, such as big data collection in IoV and distribution to attractive vehicles and humans. Another challenge is achieving fast and efficient communication between many different vehicles and smart devices called Vehicle-to-Everything (V2X). One of the vital questions that the researchers need to address is how to effectively handle the privacy of large groups of data and vehicles in IoV systems. Artificial Intelligence technology offers many smart solutions that may help IoV networks address all these questions and issues. Machine learning (ML) is one of the highest efficient AI tools that have been extensively used to resolve all mentioned problematic issues. For example, ML can be used to avoid road accidents by analyzing the driving behavior and environment by sensing data of the surrounding environment. Machine learning mechanisms are characterized by the time change and are critical to channel modeling in-vehicle network scenarios. This paper aims to provide theoretical foundations for machine learning and the leading models and algorithms to resolve IoV applications’ challenges. This paper has conducted a critical review with analytical modeling for offloading mobile edge-computing decisions based on machine learning and Deep Reinforcement Learning (DRL) approaches for the Internet of Vehicles (IoV). The paper has assumed a Secure IoV edge-computing offloading model with various data processing and traffic flow. The proposed analytical model considers the Markov decision process (MDP) and ML in offloading the decision process of different task flows of the IoV network control cycle. In the paper, we focused on buffer and energy aware in ML-enabled Quality of Experience (QoE) optimization, where many recent related research and methods were analyzed, compared, and discussed. The IoV edge computing and fog-based identity authentication and security mechanism were presented as well. Finally, future directions and potential solutions for secure ML IoV and V2X were highlighted.
The Industrial Internet of things (IIoT) helps several applications that require power control and low cost to achieve long life. The progress of IIoT communications, mainly based on cognitive radio (CR), has been guided to the robust network connectivity. The low power communication is achieved for IIoT sensors applying the Low Power Wide Area Network (LPWAN) with the Sigfox, NBIoT, and LoRaWAN technologies. This paper aims to review the various technologies and protocols for industrial IoT applications. A depth of assessment has been achieved by comparing various technologies considering the key terms such as frequency, data rate, power, coverage, mobility, costing, and QoS. This paper provides an assessment of 64 articles published on electricity control problems of IIoT between 2007 and 2020. That prepares a qualitative technique of answering the research questions (RQ): RQ1: “How cognitive radio engage with the industrial IoT?”, RQ2: “What are the Proposed architectures that Support Cognitive Radio LPWAN based IIOT?”, and RQ3: What key success factors need to comply for reliable CIIoT support in the industry?”. With the systematic literature assessment approach, the effects displayed on the cognitive radio in LPWAN can significantly revolute the commercial IIoT. Thus, researchers are more focused in this regard. The study suggests that the essential factors of design need to be considered to conquer the critical research gaps of the existing LPWAN cognitive-enabled IIoT. A cognitive low energy architecture is brought to ensure efficient and stable communications in a heterogeneous IIoT. It will protect the network layer from offering the customers an efficient platform to rent AI, and various LPWAN technology were explored and investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.