Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are increasingly becoming an indispensable part of our life. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation.
The Affective Behavior Analysis in-the-wild (ABAW2) 2021 Competition is the second -following the first very successful ABAW Competition held in conjunction with IEEE FG 2020-Competition that aims at automatically analyzing affect. ABAW2 is split into three Challenges, each one addressing one of the three main behavior tasks of Valence-Arousal Estimation, seven Basic Expression Classification and twelve Action Unit Detection. All three Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated for all these three tasks. In this paper, we describe this Competition, to be held in conjunction with ICCV 2021. We present the three Challenges, with the utilized Competition corpora. We outline the evaluation metrics and present the baseline system with its results. More information regarding the Competition is provided in the Competition site: https:// ibug.doc.ic.ac.uk/ resources/ iccv-2021-2nd-abaw/ .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.