Many chemotherapeutic regimens have been investigated for advanced unresectable and metastatic pancreatic cancer (PC), but with only minimal improvement in survival and prognosis. Here, we investigated anti-cancer function of free and nanoencapsulated hydroxytyrosol (Hyd) and curcumin (Cur), and its combinations (Hyd-Cur) on PANC-1 cell line. The poly lactide-co-glycolide-co-polyacrylic acid (PLGA-co-PAA) nano-encapsulated Hyd and Cur were synthesized, and MTT assay was performed to evaluate cytotoxic effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur. Effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur were evaluated on viability, migration, morphological alterations, colony formation, and apoptosis on PANC-1 cells. We observed that free and nano-encapsulated Hyd, Cur, and Hyd-Cur significantly increased apoptosis rates as well as significantly decreased viability, migration, and colony formation in PANC-1 cells. According to our results, Hyd-Cur combination and nano-encapsulation therapy exerts more profound apoptotic and anti-proliferative effects on PANC-1 cells than free Hyd or Hyd monotherapy.
Colorectal cancer (CC) is an important human malignancy with high cancer related death worldwide. The chemotherapy using doxorubicin hydrochloride is one of the most common cancer therapeutic methods. However, drug resistance lowers the treatment efficacy in CC patients. The combination therapies seem to be more promising by taking the advantage of synergistic effects. The present study aimed to evaluate a new strategy to enhance the anticancer activity of doxorubicin in Caco-2 CC cell line by co-administration of melatonin. The effects of doxorubicin, melatonin, and their combinations (Dox-Mel) were investigated on the proliferation and viability, morphological alterations, and tumor spheroid formation. Flow cytometry was employed to compare the apoptotic situation of the cells in study groups. Changes in metastatic potential of the cells were assessed by wound healing assay and trans-well migration assays. Moreover, expression of BAX, SMAC, BCL-2, SURVIVIN, MMP-2, and MMP-9 genes were evaluated by quantitative real time PCR and western blotting.Our study showed that doxorubicin, melatonin, and Dox-Mel significantly decreased the proliferation and viability, tumor spheroid formation, invasion, and migration. Furthermore, the changes were in a concentration and time dependent manner. There was an increase in apoptosis rate in the treatment groups. Expression of genes involved in apoptosis and cell motility were altered significantly. It was observed that anticancer activity of Dox-Mel combination was significantly more than doxorubicin and melatonin treatments alone. We showed an enhanced apoptotic and anticancer activity of doxorubicin and melatonin combination chemotherapy on CC cell line than doxorubicin or melatonin treatments alone. This combination could promote the treatment efficiency and alleviate the un-intended side effects by lowering the dose of doxorubicin prescription.
Colorectal cancer (CC) is an important human malignancy with high cancer related death worldwide. The chemotherapy using doxorubicin hydrochloride is one of the most common cancer therapeutic methods. However, drug resistance lowers the treatment efficacy in CC patients. The combination therapies seem to be more promising by taking the advantage of synergistic effects. The present study aimed to evaluate a new strategy to enhance the anticancer activity of doxorubicin in Caco-2 CC cell line by co-administration of melatonin. The effects of doxorubicin, melatonin, and their combinations (Dox-Mel) were investigated on the proliferation and viability, morphological alterations, and tumor spheroid formation. Flow cytometry was employed to compare the apoptotic situation of the cells in study groups. Changes in metastatic potential of the cells were assessed by wound healing assay and trans-well migration assays. Moreover, expression of BAX, SMAC, BCL-2, SURVIVIN, MMP-2, and MMP-9 genes were evaluated by quantitative real time PCR (qRT-PCR) and western blotting. Our study showed that doxorubicin, melatonin, and Dox-Mel significantly decreased the proliferation and viability, tumor spheroid formation, invasion and migration. Furthermore, the changes were in a concentration and time dependent manner. There was an increase in apoptosis rate in the treatment groups. Expression of genes involved in apoptosis and cell motility were altered significantly. It was observed that anticancer activity of Dox-Mel combination was significantly more than doxorubicin and melatonin treatments alone. We showed an enhanced apoptotic and anticancer activity of doxorubicin and melatonin combination chemotherapy on CC cell line than doxorubicin or melatonin treatments alone. This combination could promote the treatment efficiency and alleviate the un-intended side effects by lowering the dose of doxorubicin prescription.
Background: Due to high mortality of patients with metastatic breast cancer and limited strategies for management of this malignancy, development of novel therapeutic approaches and anti-cancer agents is essential. Objectives: In the present study, we investigated in vitro anti-proliferative effects of hydroxytyrosol, as a natural chemotherapeutic agent, against breast cancer cells MDA-MB-231 and MCF-7. Methods: The anti-proliferation activity of hydroxytyrosol on both MDA-MB-231 and MCF-7 breast cancer cells was evaluated by MTT assay. Apoptosis percentage was assessed by flow cytometry in the treated and untreated cancer cells. Moreover, the expression of three apoptotic genes (BAX, BCL2, and CASP3) was evaluated by Real-Time PCR in the treated cancer cells. Results: Our results indicated that hydroxytyrosol exerted an appropriate anti-proliferation activity on both MDA-MB-231 and MCF-7 cancer cells in a dose- and time-dependent manner. We observed a significant increase in apoptosis percentage in both treated cancer cells compared with untreated controls. In addition, hydroxytyrosol upregulated pro-apoptotic BAX and CASP3 genes while downregulated anti-apoptotic BCL2 gene. Conclusions: The findings of the present study suggested an appropriate anti-proliferation effect by hydroxytyrosol that may be due to apoptosis induction through modification of expression of apoptotic genes in breast cancer cells.
Background: Pancreatic cancer (PC) is a highly aggressive malignancy associated with low survival rates. Many chemotherapeutic regimens have been investigated for advanced unresectable and metastatic PC, but with only minimal improvement in survival and prognosis. The present study aimed to investigate the anti-cancer function of free and nano-encapsulated hydroxytyrosol (Hyd) and curcumin (Cur), and its combinations (Hyd-Cur) on the PANC-1 cell line.Methods: The poly lactide-co-glycolide-co-polyacrylic acid (PLGA-co-PAA) nano-encapsulated Hyd and Cur were synthesized, and MTT assay was performed to evaluate cytotoxic effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur. Moreover, effects of free and nano-encapsulated Hyd, Cur, and Hyd-Cur were evaluated on viability, migration, morphological alterations, colony formation, and apoptosis on PANC-1 cell line. The mRNA expression levels of MMP2, MMP9, BAX, BCL-2, and Cas9 genes were assessed after treated PANC-1 cells with free and nano-encapsulated Hyd, Cur, and Hyd-Cur.Results: The obtained results showed that free and nano-encapsulated Hyd, Cur, and Hyd-Cur treatments significantly decreased the viability, migration, and colony formation in the PANC-1 cells. Furthermore, apoptosis rates in PANC-1 cells were increased in a concentration and time dependent manner in all of the treatment groups. Moreover, anti-proliferative activity of nano-encapsulated Hyd-Cur was significantly more than other treatments.Conclusions: According to our results, Hyd-Cur combination and nano-encapsulation therapy exerts more profound apoptotic and anti-proliferative effects on PANC-1 cell line than free Hyd or Hyd monotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.