Objectives Viral oncoproteins are ideal targets in therapeutic vaccines for functional inhibition of human papillomaviruses (HPVs). Herein, we designed the peptide constructs derived from E5 and E7 oncoproteins of high-risk HPV types 16, 18, 31 and 45 using the bioinformatics tools and investigated their potency in mice. Results The framework of the combined in silico/ in vivo analysis included (1) to determine physicochemical properties of the designed constructs, (2) to identify potential IFN-c-inducing epitopes, (3) to assess allergenicity, (4) to recognize linear and discontinuous B cell epitopes using modeling and validation of 3D structure of the designed constructs, and (5) to evaluate immune responses and tumor growth in vivo. Our in silico data determined high potency of the HPV 16,18,31,45 E5 and HPV 16,18,31,45 E7 peptides for trigger B-and T-cell responses, and IFN-c secretion. In vivo study indicated that the mixture of E5 and E7 immunodominant peptides from four types of high-risk HPV could induce Th1 immune response, and protect completely mice against TC-1 tumor cells. Conclusion Generally, the combined in silico/ in vivo approaches showed the ability of the designed E5 and E7 peptide constructs from four major highrisk HPV types for development of therapeutic vaccines.
Saffron and its components have been suggested as promising candidates for cancer prevention. Carotenoids and monoterpene aldehydes are two potent ingredients of saffron. The goal of the current study was to investigate the anti-tumor effect of chemo-immunotherapy using saffron and its ingredients followed by E7-NT (gp96) DNA vaccine against tumors expressing the E7 protein of human papillomavirus. The in vitro cytotoxic and apoptotic effects of aqueous saffron extract and its components were evaluated in malignant TC-1 and non-malignant COS-7 cell lines. Then, multimodality treatments using E7-NT (gp96) DNA vaccine combined with saffron extract and its ingredients as well as single-modality treatments were tested for their efficacy in inhibiting large and bulky tumor growth. Saffron and its components exerted a considerable anti-tumor effect through prevention of cell growth and stimulation of programmed cell death. Furthermore, 100 % of mice treated with crocin were tumor-free, in contrast to DNA vaccine alone (~66.7 %) and DNA + crocin (~33.3 %) indicating the high potency of crocin as a chemotherapeutic agent. Interestingly, the multimodality treatment using DNA vaccine along with picrocrocin augmented the anti-tumor effects of picrocrocin. Thus, the combination of DNA vaccine with saffron extract and crocin at certain concentrations did not potentiate protective and therapeutic effects compared to mono-therapies for the control of TC-1 tumors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.