We propose an adaptive neuro-fuzzy inference system (ANFIS) for stock portfolio return prediction. Previous work has shown that portfolio optimization can be improved by using predicted stock earnings rather than historical earnings. We show that predicted portfolio returns can be improved by using ANFIS and taking as input a variety of technical and fundamental attributes about various indices of the stock market. To generate membership functions, we use a robust noise rejection-clustering algorithm. The neuro-fuzzy model is tested on portfolios constituted from the Tehran Stock Exchange. In our experiments, the proposed method performs better in predicting the portfolio return than the classical Markowitz portfolio optimization method, a multiple regression, a neural network, and the Sugeno-Yasukawa method. C 2010 Wiley Periodicals, Inc.
At the computational point of view, a fuzzy system has a layered structure, similar to an artificial neural network (ANN) of the radial basis function type. ANN learning algorithms can be employed for optimization of parameters in a fuzzy system. This neuro-fuzzy modeling approach has preference to explain solutions over completely black-box models, such as ANN. In this paper, we implement the design of experiment (DOE) technique to identify the significant parameters in the design of adaptive neuro-fuzzy inference systems (ANFIS) for stock price prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.