Various nitrogenous bases, such as imidazoles, pyridines and amines were employed as axial ligands in epoxidation reaction of cyclooctene bytetra-n-butylammonium hydrogen monopersulfate (n- Bu 4 NHSO 5), in the presence of Mn ( III )-tetrakis(2,3-dimethoxyphenyl)porphyrin-acetate ( T (2,3- OMeP ) PorMnOAc ). T (2,3- OMeP ) PorMnOAc is a fairly stable catalyst, with the ability of producing hydrogen bonding. High epoxidation yield of 85 ± 6% was obtained in the presence of imidazole axial ligand with 100% selectivity in 30 min. Higher conversion of around 100% was obtained by pyridine axial base, while selectivity was reduced to 69%. Further epoxidation reactions were also performed using Mn ( III )-Tetrakis(2,3-dihydroxyphenyl)porphyrin-acetate ( T (2,3- OHP ) PorMnOAc ) as catalyst. In addition to the usual electronic and steric effects, it is proposed that the catalytic activity depends on the existence and kind of hydrogen bonding between the axial base and the ortho-methoxy or hydroxy groups on the phenyl rings of manganese porphyrin. The cis to trans ratio of cis-stilbene oxide formed by imidazole and pyridine axial bases were obtained as 7.5 and 2.5 respectively. In addition GC-Ms and UV-vis studies were employed to find the nature of active species and product formation. Our DFT calculations disclosed that pyridine hydrogen bonding with moiety of the macrocycle rings strongly affects the relative energies of S/Q spin states in [ T (2,3- OMeP ) PorMn V ( O )( Py )]+, in that it results in the longer Mn – O bond and reactivity toward substrates.
The preparation and characterization are presented of a new catalytic material comprising Mg–Al layered double hydroxide and intercalated manganese(III) 5,10,15,20‐tetrakis(4‐benzoate)porphyrinacetate. Characterization was realized via various techniques. The prepared composite exhibited excellent catalytic activity in the selective epoxidation of various olefins with tetra‐n‐butylammonium hydrogen monopersulfate as an oxidant under mild reaction conditions. Furthermore, the catalytic system could be reused nine times without significant reduction in conversion percentage and any special care or additional treatment of the catalyst.
A heterogenized meso-tetrakis(2,3-dihydroxyphenyl)porphyrinatomanganese(III) acetate at zeolite imidazolate framework-8 (T(2,3-OHP)PorMn@ZIF-8) is investigated for the catalytic olefin epoxidation reactions at room temperature. Heterogenization is accomplished through a non-classical hydrogen bond proposed between T(2,3-OHP)PorMn bearing O–H groups and C–H of the 2-methylimidazolate linkers in the ZIF-8 structure. The aforementioned compound is characterized by X-ray powder diffraction (XRD), atomic absorption spectroscopy (AAS), nitrogen adsorption−desorption, FT-IR spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and Raman spectroscopy. The catalytic system with rather high potential of reusability is proposed as a fairly efficient epoxidation catalyst compared to reports in homogeneous media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.