Due to climate change, different soil stresses are increasing continuously and they threat the world food security as they limit crop productivity. Therefore, this chapter aims at integrate information about the interaction between legumes and endophytes which will help to: deep understanding of the endophytes-legume relationship, draw attention to the possibilities to exploit this relationship in soil stress mitigation and unraveling what is need to be addressed in the future. The study reviewed the most recent previous scientific works in the field. For legumes tissue colonization, endophytes almost use the same routs which results in their presence in the same niches. Co-inoculation of these bacteria enhances plant growth directly and indirectly. Some endophytes characterized by stress tolerance which interact with legumes and mitigate the adverse effect of soil stresses like salinity, acidity/alkalinity, drought and heavy metal contamination. To reduce stress and enhance plant growth, legume-associated bacteria produce ACC deaminase and other compounds. The interaction process involves induction and expression of many legume-associated bacteria chromosomal and plasmid genes which indicates that this process is a genetic based. So isolation of stress tolerant legume-associated microbes and identification of the gene related to stress tolerance will aid in production of genetic engineered endophytes adaptive to different stresses. It is concluded that all soil stresses can be addressed by application of stress tolerant endophytes to the soil affected with environmental stresses which is sustainable and low cost approach. To maximize the benefit, searching for indigenous stress tolerant endophytes is recommended.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.