Advances in the treatment of metastatic clear cell renal cell carcinoma (ccRCC) have led to improved progression-free survival of many patients; however the therapies are toxic, rarely achieve durable long-term complete responses and are not curative. Herein we used a single bicistronic lentiviral vector to develop a new combination immunotherapy that consists of human anti-carbonic anhydrase IX (CAIX)-targeted chimeric antigen receptor (CAR) T cells engineered to secrete human anti-programmed death ligand 1 (PD-L1) antibodies at the tumor site. The local antibody delivery led to marked immune checkpoint blockade. Tumor growth diminished 5 times and tumor weight reduced 50–80% when compared with the anti-CAIX CAR T cells alone in a humanized mice model of ccRCC. The expression of PD-L1 and Ki67 in the tumors decreased and an increase in granzyme B levels was found in CAR T cells. The anti-PD-L1 IgG1 isotype, which is capable of mediating ADCC, was also able to recruit human NK cells to the tumor site in vivo. These armed second-generation CAR T cells empowered to secrete human anti-PD-L1 antibodies in the ccRCC milieu to combat T cell exhaustion is an innovation in this field that should provide renewed potential for CAR T cell immunotherapy of solid tumors where limited efficacy is currently seen.
New approaches to cancer immunotherapy have been developed, showing the ability to harness the immune system to treat and eliminate cancer. For many solid tumors, therapy with checkpoint inhibitors has shown promise. For hematologic malignancies, adoptive and engineered cell therapies are being widely developed, using cells such as T lymphocytes, as well as natural killer (NK) cells, dendritic cells, and potentially others. Among these adoptive cell therapies, the most active and advanced therapy involves chimeric antigen receptor (CAR)-T cells, which are T cells in which a chimeric antigen receptor is used to redirect specificity and allow T cell recognition, activation and killing of cancers, such as leukemia and lymphoma. Two autologous CAR-T products have been approved by several health authorities, starting with the U.S. Food and Drug Administration (FDA) in 2017. These products have shown powerful, inducing, long-lasting effects against B cell cancers in many cases. In distinction to the results seen in hematologic malignancies, the field of using CAR-T products against solid tumors is in its infancy. Targeting solid tumors and trafficking CAR-T cells into an immunosuppressive microenvironment are both significant challenges. The goal of this review is to summarize some of the most recent aspects of CAR-T cell design and manufacturing that have led to successes in hematological malignancies, allowing the reader to appreciate the barriers that must be overcome to extend CAR-T therapies to solid tumors successfully.
MB-PDT is a cheap and efficient method of decreasing MM volume and thus disease progression. This reduction is mediated by downregulation of PCNA and heparanases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.