Malaria has been Ethiopia’s predominant communicable disease for decades. Following the catastrophic malaria outbreak in 2003–2004, the Federal Ministry of Health (FMoH) took drastic public health actions to lower the burden of malaria. The FMoH achieved significant declines in malaria mortality and incidence, and recently declared its objective to achieve malaria elimination in low malaria transmission areas of Ethiopia by 2020. However, while the overall malaria prevalence has decreased, unpredictable outbreaks increasingly occur irregularly in regions previously considered “malaria-free”. Such outbreaks have disastrous consequences on populations of these regions as they have no immunity against malaria. The Amhara Region accounts for 31% of Ethiopia’s malaria burden and is targeted for malaria elimination by the FMoH. Amhara’s epidemiological surveillance system faces many challenges to detect in a timely manner the unpredictable and irregular malaria outbreaks that occur in areas of otherwise low transmission. Despite the evidence of a shift in malaria transmission patterns, Amhara’s malaria control interventions remain constrained to areas that are historically known to have stable malaria transmission. This paper discusses the influence of temperature and precipitation variability, entomological parameters, and human population mobility on malaria transmission patterns across the Amhara Region, and in particular, in areas of unstable transmission. We argue that malaria epidemiological surveillance systems can be improved by accounting for population movements in addition to environmental and entomological factors. However, to date, no study has statistically analyzed the interplay of population dynamics on environmental and entomological drivers of malaria transmission.
Background Though most of Panamá is free from malaria, localized foci of transmission persist, including in the Guna Yala region. Government-led entomological surveillance using an entomological surveillance planning tool (ESPT) sought to answer programmatically-relevant questions that would enhance the understanding of both local entomological drivers of transmission and gaps in protection that result in persisting malaria transmission to guide local vector control decision-making. Methods The ESPT was used to design a sampling plan centered around the collection of minimum essential indicators to investigate the relevance of LLINs and IRS in the communities of Permé and Puerto Obaldía, Guna Yala, as well as to pinpoint any remaining spaces and times where humans are exposed to Anopheles bites (gaps in protection). Adult Anopheles were collected at three time points via human landing catches (HLCs), CDC Light Traps (LT), and pyrethrum spray catches (PSCs) during the rainy and dry seasons. Mosquitoes were identified to species via molecular methods. Insecticide susceptibility testing of the main vector species to fenitrothion was conducted. Results In total, 7537 adult Anopheles were collected from both sites. Of the 493 specimens molecularly confirmed to species, two thirds (n = 340) were identified as Nyssorhynchus albimanus, followed by Anopheles aquasalis. Overall Anopheles human biting rates (HBRs) were higher outdoors than indoors, and were higher in Permé than in Puerto Obaldía: nightly outdoor HBR ranged from 2.71 bites per person per night (bpn) (Puerto Obaldía), to 221.00 bpn (Permé), whereas indoor nightly HBR ranged from 0.70 bpn (Puerto Obaldía) to 81.90 bpn (Permé). Generally, peak biting occurred during the early evening. The CDC LT trap yields were significantly lower than that of HLCs and this collection method was dropped after the first collection. Pyrethrum spray catches resulted in only three indoor resting Anopheles collected. Insecticide resistance (IR) of Ny. albimanus to fenitrothion was confirmed, with only 65.5% mortality at the diagnostic time. Conclusion The early evening exophagic behaviour of Anopheles vectors, the absence of indoor resting behaviours, and the presence of resistance to the primary intervention insecticide demonstrate limitations of the current malaria strategy, including indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs), and point to both gaps in protection and to the drivers of persisting malaria transmission in Guna Yala. These findings highlight the need for continued and directed entomological surveillance, based on programmatic questions, that generates entomological evidence to inform an adaptive malaria elimination strategy.
The effectiveness of vector-control tools is often assessed by experiments as a reduction in mosquito landings using human landing catches (HLCs). However, HLCs alone only quantify a single characteristic and therefore do not provide information on the overall impacts of the intervention product. Using data from a recent semi-field study which used time-stratified HLCs, aspiration of non-landing mosquitoes, and blood feeding, we suggest a Bayesian inference approach for fitting such data to a stochastic model. This model considers both personal protection, through a reduction in biting, and community protection, from mosquito mortality and disarming (prolonged inhibition of blood feeding). Parameter estimates are then used to predict the reduction of vectorial capacity induced by etofenpox-treated clothing, picaridin topical repellents, transfluthrin spatial repellents and metofluthrin spatial repellents, as well as combined interventions forPlasmodium falciparummalaria inAnopleles minimus. Overall, all interventions had both personal and community effects, preventing biting and killing or disarming mosquitoes. This led to large estimated reductions in the vectorial capacity, with substantial impact even at low coverage. As the interventions aged, fewer mosquitoes were killed; however the impact of some interventions changed from killing to disarming mosquitoes. Overall, this inference method allows for additional modes of action, rather than just reduction in biting, to be parameterised and highlights the tools assessed as promising malaria interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.