The instability of membrane proteins in detergent solution can generally be traced to the dissociating character of detergents and often correlates with delipidation. We examine here the possibility of substituting detergents, after membrane proteins have been solubilized, with non-detergent surfactants whose hydrophobic moiety contains a per£uorinated region that makes it lipophobic. In order to improve its a⁄nity for the protein surface, the £uorinated chain is terminated by an ethyl group. Test proteins included bacteriorhodopsin, the cytochrome b 6 f complex, and the transmembrane region of the bacterial outer membrane protein OmpA. All three proteins were puri¢ed using classical detergents and transferred into solutions of C 2 -H 5 C 6 F 12 C 2 H 4 -S-poly-Tris-(hydroxymethyl)aminomethane (HF-TAC). Transfer to HF-TAC maintained the native state of the proteins and prevented their precipitation. Provided the concentration of HF-TAC was high enough, HF-TAC/membrane protein complexes ran as single bands upon centrifugation in sucrose gradients. Bacteriorhodopsin and the cytochrome b 6 f complex, both of which are detergent-sensitive, exhibited increased biochemical stability upon extended storage in the presence of a high concentration of HF-TAC as compared to detergent micelles. The stabilization of cytochrome b 6 f is at least partly due to a better retention of protein-bound lipids. ß
SummarySecretins are a family of large bacterial outer membrane channels that serve as exit ports for folded proteins, filamentous phage and surface structures. Despite the large size of their substrates, secretins do not compromise the barrier function of the outer membrane, implying a gating mechanism. The region in the primary structure that forms the putative gate has not previously been determined for any secretin. To identify residues involved in gating the pIV secretin of filamentous bacteriophage f1, we used random mutagenesis of the gene followed by positive selection for mutants with compromised barrier function ('leaky' mutants). We identified mutations in 34 residues, 30 of which were clustered into two regions located in the centre of the conserved C-terminal secretin family domain: GATE1 (that spanned 39 residues) and GATE2 (that spanned 14 residues). An internal deletion constructed in the GATE2 region resulted in a severely leaky phenotype. Three of the four remaining mutations are located in the region that encodes the N-terminal, periplasmic portion of pIV and could be involved in triggering gate opening. Two missense mutations in the 24-residue region that separates GATE1 and GATE2 were also constructed. These mutant proteins were unstable, defective in multimerization and non-functional.
We describe the synthesis and preliminary physicochemical and biological assessments of a new class of nonionic hybrid hydrofluoro amphiphiles derived from tris(hydroxymethyl)aminomethane (THAM). The synthesis of the hydrophobic tail of these amphiphiles is based on the preparation of an asymmetrical hydrofluorocarbon derivative containing an ethyl segment, a fluorocarbon core, and an ethyl thiol moiety. This molecule led to either THAM galactosylated monoadducts or telomers. These amphiphiles exhibit neither detergency toward cell membranes nor membrane protein denaturation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.