Product ion spectra produced by collision-induced dissociation (CID) in tandem mass spectrometry can yield important structural information on organic compounds which can aid in their identification. However, differences in experimental conditions may have a strong effect on the degree of product ion formation and therefore on the features observed in product ion spectra. For this reason, a common approach for library building is the acquisition of several spectra, typically between 5 and 10, each at a different collision energy level. In this study, the use of an alternative approach was investigated, where a tuning point protocol was applied to tune the instruments in an attempt to standardise CID conditions prior to data acquisition. With this approach, the acquisition of a single mass spectrum was sufficient. The stability of the tuning point was investigated and the choice of a commercially available search package to assess spectral comparability was discussed. Finally, the product ion spectra of 33 compounds were acquired on twelve tandem-in-space instruments, including nine triple quadrupoles, one hybrid triple quadrupole linear ion trap and two quadrupole time-of-flight mass spectrometers, resulting in 2178 spectral comparisons being carried out. The results from the spectral comparisons suggest that the use of a tuning point enables the standardisation of the experimental conditions that affect the degree of product ion formation. Indeed, 84.5% of the comparisons demonstrated a good degree of spectral agreement with match scores greater than 700, which we believe is the minimum score for a tentative library match.
BACKGROUND: LC-MS is increasingly used for therapeutic drug monitoring of tacrolimus. A recent summary from an international proficiency-testing scheme demonstrated that the mass spectrometry respondents were the largest method group. However, these methods lack standardization, which may explain the relatively poor interlaboratory agreement for such methods. This study aimed to provide one path toward the standardization of tacrolimus quantification by use of LC-MS.
UPLC-ion mobility spectrometry separations combined with mass spectrometry (UPLC-IM-MS) and tandem mass spectrometry (UPLC-IM-MS/MS) have been investigated for the simultaneous determination of testosterone and epitestosterone glucuronides in urine. The glucuronide epimers of testosterone and epitestosterone were separated by ion mobility spectrometry prior to mass analysis on the basis of differences in their collision cross sections, which have been measured in nitrogen. Combining ion mobility separation with UPLC/MS enhances the analysis of these low-abundance steroids in urine by selective interrogation of specific retention time, mass-to-charge and mobility regions. Detection limits for the UPLC-IM-MS/MS analysis of TG and ETG were 9.9 ng mL(-1) and 98 ng mL(-1) respectively, equivalent to 0.7 ng mL(-1) and 7.4 ng mL(-1) in urine, with linear dynamic ranges corresponding to 0.7-108 ng mL(-1) and 7.4-147 ng mL(-1) in urine. Repeatability (%RSD) for urine extracts was 0.64% and 2.31% for TG and ETG respectively.
For the determination of trace level impurities, analytical chemists are confronted with complex mixtures and difficult separations. New technologies such as high-field asymmetric waveform ion mobility spectrometry (FAIMS) have been developed to make their work easier; however, efficient method development and troubleshooting can be quite challenging if little prior knowledge of the factors or their settings is available. We present the results of an investigation performed in order to obtain a better understanding of the FAIMS technology. The influence of eight factors (polarity of dispersion voltage, outer bias voltage, total gas flow rate, composition of the carrier gas (e.g. %He), outer electrode temperature, ratio between the temperatures of the inner and outer electrodes, flow rate and composition of the make-up mobile phase) was assessed. Five types of responses were monitored: value of the compensation voltage (CV), intensity, width and asymmetry of the compensation voltage peak, and resolution between two peaks. Three types of studies were performed using different test mixtures and various ionisation modes to assess whether the same conclusions could be drawn across these conditions for a number of different types of compounds. To extract the maximum information from as few experiments as possible, a Design of Experiment (DoE) approach was used. The results presented in this work provide detailed information on the factors affecting FAIMS separations and therefore should enable the user to troubleshoot more effectively and to develop efficient methods.
Reference materials certified for purity are essential to ensure harmonization of analytical measurements. LGC is currently certifying these materials using an indirect multi-method approach quantifying impurities: Related substances using high-performance liquid chromatography, gas chromatography (GC), differential scanning calorimetry; Residual solvents using headspace GC coupled to mass spectrometry; Inorganic content using ashing, acid digest ion couple plasma mass spectrometry or thermogravimetric analysis; Water using oven coulometric Karl Fischer/direct addition coulometric Karl Fischer. Related substances are not straightforward to quantify without an appropriate standard due to possible difference in response factor for the impurity relative to the main compound. In this article, existing LGC RMs certified for purity were purified further using semi-preparative HPLC. These ultra-purified organic substances were virtually free of related substances making their purity assessment faster and more straightforward, i.e., no need to identify impurities and subsequently quantify them. After characterization, these ultra-purified standards were used as calibrants to determine directly the mass fraction of the analyte in the original CRM using exact matching single-point HPLC calibration. This new approach opens the possibility of certifying the purity of low purity substances with a relative small uncertainty without the need of identifying the impurities present in the sample.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.