The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.
Uncoupling protein 2 (UCP2) belongs to the mitochondrial anion carrier family and partially uncouples respiration from ATP synthesis when expressed in recombinant yeast mitochondria. We generated a highly sensitive polyclonal antibody against human UCP2. Its reactivity toward mitochondrial proteins was compared between wild type and ucp2(؊/؊) mice, leading to nonambiguous identification of UCP2. We detected UCP2 in spleen, lung, stomach, and white adipose tissue. No UCP2 was detected in heart, skeletal muscle, liver, and brown adipose tissue. The level of UCP2 in spleen mitochondria is less than 1% of the level of UCP1 in brown adipose tissue mitochondria. Starvation and LPS treatments increase UCP2 level up to 12 times in lung and stomach, which supports the hypothesis that UCP2 responds to oxidative stress situations. Stimulation of the UCP2 expression occurs without any change in UCP2 mRNA levels. This is explained by translational regulation of the UCP2 mRNA. We have shown that an upstream open reading frame located in exon two of the ucp2 gene strongly inhibits the expression of the protein. This further level of regulation of the ucp2 gene provides a mechanism by which expression can be strongly and rapidly induced under stress conditions.
UCP21 belongs to a large family of at least 35 anion carriers that are present in the inner mitochondrial membrane (1). Most of these carriers transport key metabolite substrates such as the malate, oxoglutarate, citrate, or products from the oxidative phosphorylation such as ADP 3Ϫ , ATP 4Ϫ , or P i (for review see Ref. 2). Since the discovery of ucp2 (3, 4) and ucp3 (5-7) genes, a subfamily of mitochondrial carriers, related to the well known UCP1 from brown adipose tissue, has emerged in mammals as well as in plants (8). The deduced coding sequence for UCP2 predicts 59% identity with UCP1, whereas the predicted UCP3 sequence is 72% identical to UCP2.
The cDNA of an uncoupling protein (UCP) homologue was obtained by screening a chicken skeletal-muscle library. The predicted 307-amino-acid sequence of avian UCP (avUCP) is 55, 70, 70 and 46% identical with mammalian UCP1, UCP2 and UCP3 and plant UCP respectively. avUCP mRNA expression is restricted to skeletal muscle and its abundance was increased 1.3-fold in a chicken line showing diet-induced thermogenesis, and 3.6- and 2.6-fold in cold-acclimated and glucagon-treated ducklings developing muscle non-shivering thermogenesis respectively. The present data support the implication of avUCP in avian energy expenditure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.