A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated in the regulation of body temperature, body composition and glucose metabolism. However, UCP1-containing brown adipose tissue is unlikely to be involved in weight regulation in adult large-size animals and humans living in a thermoneutral environment (one where an animal does not have to increase oxygen consumption or energy expenditure to lose or gain heat to maintain body temperature), as there is little brown adipose tissue present. We now report the discovery of a gene that codes for a novel uncoupling protein, designated UCP2, which has 59% amino-acid identity to UCP1, and describe properties consistent with a role in diabetes and obesity. In comparison with UCP1, UCP2 has a greater effect on mitochondrial membrane potential when expressed in yeast. Compared to UCP1, the gene is widely expressed in adult human tissues, including tissues rich in macrophages, and it is upregulated in white fat in response to fat feeding. Finally, UCP2 maps to regions of human chromosome 11 and mouse chromosome 7 that have been linked to hyperinsulinaemia and obesity. Our findings suggest that UCP2 has a unique role in energy balance, body weight regulation and thermoregulation and their responses to inflammatory stimuli.
The gene Ucp2 is a member of a family of genes found in animals and plants, encoding a protein homologous to the brown fat uncoupling protein Ucp1 (refs 1-3). As Ucp2 is widely expressed in mammalian tissues, uncouples respiration and resides within a region of genetic linkage to obesity, a role in energy dissipation has been proposed. We demonstrate here, however, that mice lacking Ucp2 following targeted gene disruption are not obese and have a normal response to cold exposure or high-fat diet. Expression of Ucp2 is robust in spleen, lung and isolated macrophages, suggesting a role for Ucp2 in immunity or inflammatory responsiveness. We investigated the response to infection with Toxoplasma gondii in Ucp2-/- mice, and found that they are completely resistant to infection, in contrast with the lethality observed in wild-type littermates. Parasitic cysts and inflammation sites in brain were significantly reduced in Ucp2-/- mice (63% decrease, P<0.04). Macrophages from Ucp2-/- mice generated more reactive oxygen species than wild-type mice (80% increase, P<0.001) in response to T. gondii, and had a fivefold greater toxoplasmacidal activity in vitro compared with wild-type mice (P<0.001 ), which was absent in the presence of a quencher of reactive oxygen species (ROS). Our results indicate a role for Ucp2 in the limitation of ROS and macrophage-mediated immunity.
Expression of mRNA for 61-, ,2-, and ,3-adrenergic receptors (#1-, ,2-, and #3-AR) was investigated in human tissues. #1-and ,2-AR mRNA distribution correlated with that of the cognate receptors established by pharmacological studies. #3-AR transcripts were abundant in infant perirenal brown adipose tissue, characterized by the presence of uncoupling protein (UCP) mRNA. In adult whole adipose tissues, ,3-AR mRNA levels were high in deep deposits such as perirenal and omental, and lower in subcutaneous. In these deposits, UCP mRNA levels paralleled those of #3-AR. However, isolated omental and subcutaneous adipose cells, enriched in white adipocytes, expressed #3-AR but no UCP transcripts. #3-AR mRNA was highly expressed in gallbladder, and to a much lower extent in colon, independently of UCP mRNA. Quadriceps or abdominal muscles, heart, liver, lung, kidney, thyroid, and lymphocytes did not express intrinsic #3-AR mRNA. This study demonstrates that substantial amounts of brown adipocytes exist throughout life in adipose deposits, which are generally classified as white. These deposits are the main sites of #3-AR expression, which also occurs in gallbladder and colon. #3-AR may thus be involved in the control of lipid metabolism, possibly from fat assimilation in the digestive tract, to triglyceride storage and mobilization in adipose tissues. (J. Clin. Invest. 1993. 91:344-349.)
Uncoupling protein 2 (UCP2) maps to a region on distal mouse chromosome 7 that has been linked to the phenotypes of obesity and type II diabetes. We recently reported that UCP2 expression is increased by high fat feeding in adipose tissue of the A͞J strain of mice, which is resistant to the development of dietary obesity. More recently, a third UCP (UCP3) was identified, which is expressed largely in skeletal muscle and brown adipose tissue. The UCP2 and UCP3 genes are located adjacent to one another on mouse chromosome 7. Thus, the roles of these UCPs in both metabolic efficiency and the linkage to obesity and diabetes syndromes is unclear. For this reason, we examined the expression of UCP2 and UCP3 in white adipose tissue and interscapular brown adipose tissue and in gastrocnemius͞soleus muscle preparations from the obesity-resistant A͞J and C57BL͞KsJ (KsJ) strains and the obesity-prone C57BL͞6J (B6) mouse strain. In both KsJ and A͞J mice, UCP2 expression in white fat was increased Ϸ2-fold in response to 2 weeks of a high fat diet, but there was no effect of diet on UCP2 levels in B6 mice. In skeletal muscle and in brown fat, neither UCP2 nor UCP3 expression was affected by diet in A͞J, B6, or KsJ mice. However, in brown fat, we observed a 2-3-fold increase in the expression of UCP1 in response to dietary fat challenge, which may be related to diet-induced elevations in plasma leptin levels. Together, these results indicate that the consumption of a high fat diet selectively regulates UCP2 expression in white fat and UCP1 expression in brown fat and that resistance to obesity is correlated with this early, selective induction of UCP1 and UCP2 and is not associated with changes in expression of UCP3.Obesity is a disorder of energy balance in which energy intake is greater than energy expenditure. Methods to control obesity through limiting energy intake have had modest success at best, and it is widely recognized that energy expenditure must be increased in an obese individual if long term weight loss is to be achieved. The recent discovery of several new uncoupling proteins (UCPs) provides new molecular targets for increasing energy expenditure. The UCPs are integral membrane proteins of the mitochondrial inner membrane, where they function as a proton channel or shuttle. These proteins uncouple the process of mitochondrial respiration from oxidative phosphorylation, diminishing the resulting production of ATP and instead yielding dissipative heat. The action of these proteins creates a futile cycle that decreases the metabolic efficiency of the organism. Thus, UCPs are potentially important in disorders of energy balance such as obesity and diabetes (1, 2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.