A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated in the regulation of body temperature, body composition and glucose metabolism. However, UCP1-containing brown adipose tissue is unlikely to be involved in weight regulation in adult large-size animals and humans living in a thermoneutral environment (one where an animal does not have to increase oxygen consumption or energy expenditure to lose or gain heat to maintain body temperature), as there is little brown adipose tissue present. We now report the discovery of a gene that codes for a novel uncoupling protein, designated UCP2, which has 59% amino-acid identity to UCP1, and describe properties consistent with a role in diabetes and obesity. In comparison with UCP1, UCP2 has a greater effect on mitochondrial membrane potential when expressed in yeast. Compared to UCP1, the gene is widely expressed in adult human tissues, including tissues rich in macrophages, and it is upregulated in white fat in response to fat feeding. Finally, UCP2 maps to regions of human chromosome 11 and mouse chromosome 7 that have been linked to hyperinsulinaemia and obesity. Our findings suggest that UCP2 has a unique role in energy balance, body weight regulation and thermoregulation and their responses to inflammatory stimuli.
The UCP2-UCP3 gene cluster maps to chromosome 11q13 in humans, and polymorphisms in these genes may contribute to obesity through effects on energy metabolism. DNA sequencing of UCP2 and UCP3 revealed three polymorphisms informative for association studies: an Ala-->Val substitution in exon 4 of UCP2, a 45 bp insertion/deletion in the 3'-untranslated region of exon 8 of UCP2 and a C-->T silent polymorphism in exon 3 of UCP3. Initially, 82 young (mean age = 30 +/- 7 years), unrelated, full-blooded, non-diabetic Pima Indians were typed for these polymorphisms by direct sequencing. The three sites were in linkage disequilibrium ( P < 0.00001). The UCP2 variants were associated with metabolic rate during sleep (exon 4, P = 0.007; exon 8, P = 0.016) and over 24 h (exon 8, P = 0.038). Heterozygotes for UCP2 variants had higher metabolic rates than homozygotes. The UCP3 variant was not significantly associated with metabolic rate or obesity. In a further 790 full-blooded Pima Indians, there was no significant association between the insertion/deletion polymorphism and body mass index (BMI). However, when only individuals >45 years of age were considered, heterozygotes (subjects with the highest sleeping metabolic rate) had the lowest BMI (P = 0.04). The location of the insertion/deletion polymorphism suggested a role in mRNA stability; however, it appeared to have no effect on skeletal muscle UCP2 mRNA levels in a subset of 23 randomly chosen Pima Indians. In conclusion, these results suggest a contribution from UCP2 (or UCP3) to variation in metabolic rate in young Pima Indians which may contribute to overall body fat content later in life.
We report here the cloning and functional analysis of a novel homologue of the mitochondrial carriers predominantly expressed in the central nervous system and referred to as BMCP1 (brain mitochondrial carrier protein-1). The predicted amino acid sequence of this novel mitochondrial carrier indicates a level of identity of 39, 31, or 30%, toward the mitochondrial oxoglutarate carrier, phosphate carrier, or adenine nucleotide translocator, respectively, and a level of identity of 34, 38, or 39% with the mitochondrial uncoupling proteins UCP1, UCP2, or UCP3, respectively. Northern analysis of mouse, rat, or human tissues demonstrated that mRNA of this novel gene is mainly expressed in brain, although it is 10 -30-fold less expressed in other tissues. In situ hybridization analysis of brain showed it is particularly abundant in cortex, hippocampus, thalamus, amygdala, and hypothalamus. Chromosomal mapping indicates that BMCP1 is located on chromosome X of mice and at Xq24 in man. Expression of the protein in yeast strongly impaired growth rate. Analysis of respiration of total recombinant yeast or yeast spheroplasts and in particular of the relationship between respiratory rate and membrane potential of yeast spheroplasts revealed a marked uncoupling activity of respiration, suggesting that although BMCP1 sequence is more distant from the uncoupling proteins (UCPs), this protein could be a fourth member of the UCP family.
The regulation of body fat equilibrium in mammals depends on a balance between diet and energy expenditure. Energy expenditure occurs as a result of a combination of resting metabolic rate, physical exercise and non-shivering thermogenesis. It has become increasingly evident that even small calorific inequalities can lead to an increase in fat storage and obesity. There is also an intimate association between increasing body weight and Type II (non-insulin-dependent) diabetes even in populations in which obesity is not a common problem. The recent addition of two new uncoupling proteins (UCP), UCP2 and UCP3 to the mitochondrial carrier protein family of genes provides new opportunities to study thermogenesis in humans [1±3]. Activated uncoupling proteins promote proton transport and consequently decrease the proton electrochemical potential gradient across the inner mitochondrial membrane. This uncouples oxidative phosphorylation of ADP to ATP, leading to generation of heat [4]. A close relation between obesity in mice Diabetologia (1999) AbstractAims/hypothesis. Linkage between markers close to the uncoupling protein 2 and 3 genes (11q13) and resting metabolic rate and a pre-diabetic phenotype have been found. The syntenic region in mouse has been found to be linked to quantitative traits associated with obesity and diabetes. UCP2 and UCP3 could therefore have an important role in body weight regulation and susceptibility to diabetes. We investigated a recently identified variant of the UCP2 gene in exon 8 as a marker for glucose and weight homeostasis. Methods. Length variation of the UCP2 exon 8 variant was studied by the polymerase chain reaction and agarose gel electrophoresis. Sequence variants of the UCP3 gene were sought by semi-automated DNA sequencing. Results. In 453 South Indian subjects, we found an association in women between the UCP2 exon variant and body mass index (p = 0.018). These findings were replicated in a separate group of South Indian subjects (n = 143, p < 0.001) irrespective of sex. Although no association was found between the UCP2 exon 8 variant and overt obesity in British subjects, the UCP2 genotype of obese women (n = 83) correlated with fasting serum leptin concentration (p = 0.006) in the presence of extreme obesity. These observations could not be explained by tight linkage disequilibrium with a coding region variant in the region of the UCP3 gene of biological significance. Lastly, no association was found between UCP2 and Type II (non-insulin-dependent) diabetes using either a family based design (85 families) or case control study (normal glucose tolerance n = 335, impaired glucose tolerance n = 42, Type II diabetes n = 76). Conclusion/interpretation. We have described a UCP2 gene exon 8 variant that may affect susceptibility to weight gain by influencing regulation of leptin. [Diabetologia (1999) 42: 688±693]
Uncoupling proteins (UCP) may influence thermogenesis. Since skeletal muscle plays an important role in energy homeostasis and substrate oxidation, this study was undertaken to test the hypotheses that skeletal muscle UCP2 content is altered in obesity and could be linked to basal energy expenditure, insulin sensitivity, or substrate oxidation within skeletal muscle under postabsorptive (fasting) conditions. To examine these possibilities, limb basal energy expenditure and respiratory quotient (bRQ) were measured in 18 obese nondiabetic (Ob) and lean individuals (L). Total body fat (%) ranged from 11% to 46%. In addition, insulin-stimulated rates of glucose disposal (Rd) were measured under euglycemic hyperinsulinemic conditions. Biopsy of vastus lateralis muscle was used to measure cytochrome c oxidase (COX) enzyme activity and UCP2 content. Whereas low muscle COX activity was found in the Ob compared to L (6.9+/-1.6 vs. 9.6+/-1.2 U/g; P<0.001), skeletal muscle UCP2 content in Ob was significantly higher than in L (48+/-9 vs. 33+/-12 arbitrary units/g; P<0.05). Moreover, UCP2 content was positively correlated with percent of total body fat (r=0.57; P<0. 05) and bRQ (r=0.59; P<0.01), but not with visceral fat (r=0.17; P=0. 49), basal energy expenditure (r=0.07; P=0.79) or Rd (r=-0.23; P=0. 34). In summary, these results indicate that if development of obesity in humans is mediated by defective expression of UCP2 within skeletal muscle, then this effect is not observed in people with established obesity. The present study also suggests that skeletal muscle UCP2 content is not related to basal energy expenditure or insulin sensitivity in humans. However, the increased content of UCP2 within skeletal muscle in obesity appears to coincide with a reduced postabsorptive lipid utilization by muscle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.