ABCG2 is an ATP-binding cassette (ABC) transporter preferentially expressed by immature human hematopoietic progenitors. Due to its role in drug resistance, its expression has been correlated with a protection role against protoporhyrin IX (PPIX) accumulation in stem cells under hypoxic conditions. We show here that zinc mesoporphyrin, a validated fluorescent heme analog, is transported by ABCG2. We also show that the ABCG2 large extracellular loop ECL3 constitutes a porphyrinbinding domain, which strongly interacts with heme, hemin, PPIX, ZnPPIX, CoPPIX, and much less efficiently with pheophorbide a, but not with vitamin B12. K d values are in the range 0.5-3.5 M, with heme displaying the highest affinity. Nonporphyrin substrates of ABCG2, such as mitoxantrone, doxo/ daunorubicin, and riboflavin, do not bind to ECL3. Single-point mutations H583A and C603A inside ECL3 prevent the binding of hemin but hardly affect that of iron-free PPIX. The extracellular location of ECL3 downstream from the transport sites suggests that, after membrane translocation, hemin is transferred to ECL3, which is strategically positioned to release the bound porphyrin to extracellular partners. We show here that human serum albumin could be one of these possible partners as it removes hemin bound to ECL3 and interacts with ABCG2, with a K d of about 3 M.
BackgroundMembrane proteins are privileged pharmaceutical targets for which the development of structure-based drug design is challenging. One underlying reason is the fact that detergents do not stabilize membrane domains as efficiently as natural lipids in membranes, often leading to a partial to complete loss of activity/stability during protein extraction and purification and preventing crystallization in an active conformation.Methodology/Principal FindingsAnionic calix[4]arene based detergents (C4Cn, n = 1–12) were designed to structure the membrane domains through hydrophobic interactions and a network of salt bridges with the basic residues found at the cytosol-membrane interface of membrane proteins. These compounds behave as surfactants, forming micelles of 5–24 nm, with the critical micellar concentration (CMC) being as expected sensitive to pH ranging from 0.05 to 1.5 mM. Both by 1H NMR titration and Surface Tension titration experiments, the interaction of these molecules with the basic amino acids was confirmed. They extract membrane proteins from different origins behaving as mild detergents, leading to partial extraction in some cases. They also retain protein functionality, as shown for BmrA (Bacillus multidrug resistance ATP protein), a membrane multidrug-transporting ATPase, which is particularly sensitive to detergent extraction. These new detergents allow BmrA to bind daunorubicin with a Kd of 12 µM, a value similar to that observed after purification using dodecyl maltoside (DDM). They preserve the ATPase activity of BmrA (which resets the protein to its initial state after drug efflux) much more efficiently than SDS (sodium dodecyl sulphate), FC12 (Foscholine 12) or DDM. They also maintain in a functional state the C4Cn-extracted protein upon detergent exchange with FC12. Finally, they promote 3D-crystallization of the membrane protein.Conclusion/SignificanceThese compounds seem promising to extract in a functional state membrane proteins obeying the positive inside rule. In that context, they may contribute to the membrane protein crystallization field.
During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1, which behaves as a molecular cluster. How this cluster assembles and whether this association has a functional role remain unknown. The analysis of CX3CL1 clusters using native electrophoresis and single molecule fluorescence kinetics shows that CX3CL1 is a homo-oligomer of 3 to 7 monomers. Fluorescence recovery after photobleaching assays reveal that the CX3CL1-transmembrane domain peptide self-associates in both cellular and acellular lipid environments, while its random counterpart (i.e. peptide with the same residues in a different order) does not. This strongly indicates that CX3CL1 oligomerization is driven by its intrinsic properties. According to the molecular modeling, CX3CL1 does not associate in compact bundles but rather with monomers linearly assembled side by side. Finally, the CX3CL1 transmembrane peptide inhibits both the CX3CL1 oligomerization and the adhesive function, while its random counterpart does not. This demonstrates that CX3CL1 oligomerization is mandatory for its adhesive potency. Our results provide a new direction to control CX3CL1-dependent cellular adherence in key immune processes. The migration of blood leukocytes to damaged tissues is the first step of the inflammation process and involves a sequence of coordinated interactions between leukocytes and endothelial cells 1-3. The chemotactic cytokines called chemokines that primarily attract leukocytes, are central to the physiological and pathological inflammatory processes 4-6. Chemokines trigger leukocyte activation and their firm adhesion to the inflamed endothelium, mainly through integrins 7-9. Two members of the chemokine family are exceptions: CXCL16 and CX3CL1. In addition to their chemokine domain (CD), these two chemokines possess three domains: a mucin-like stalk, a transmembrane (TM) domain, and a cytosolic tail 10,11. When interacting with their cognate receptors (CXCR6 and CX3CR1, respectively), these chemokines induce cell-cell adhesion 12. CXCL16 and CX3CL1 can also be cleaved by metalloproteinases, such as ADAM10 and ADAM17 13-15 , to produce a soluble form with chemotactic functions. The CX3CL1 chemokine, with its unique CX3CR1 receptor 16 , is involved in adherence to the endothelium of the inflammatory monocyte population (CD14 hi CD16-CX3CR1 + CCR2 + in humans, Ly6C hi CX3CR1 + CCR2 + in mice) 12,17-20 likely through interaction with platelets 21,22. This chemokine is also involved in the recruitment of NK lymphocytes 23,24 and in lymphocyte survival as in allergic diseases 25 , as well as in monocytic 26,27 and neuronal survival 28-31. An additional function of the CX3CR1-CX3CL1 pair is the regulation of the patrolling behavior and the margination of monocytes in blood vessels 32,33 or their adherence to the bone marrow 34. The CX3CL1 chemokine is also involved in cytoadhesion of red blood cells infected with the malaria parasite Plasmodium
During inflammatory response, blood leukocytes adhere to the endothelium. This process involves numerous adhesion molecules, including a transmembrane chemokine, CX3CL1. We previously found that CX3CL1 clusters in oligomers. How this cluster assembles and whether it has a functional role remain unknown. Using various biochemical and biophysical approaches, we show that CX3CL1 clusters are homo-oligomers with 3 to 7 CX3CL1 molecules. We demonstrate that the transmembrane domain peptide self-associates at a similar level in both cellular and acellular lipid environments while its random counterpart (a scrambled peptide) does not. Hence, oligomerization is mainly driven by the transmembrane domain intrinsic properties. Molecular modeling suggests that transmembrane peptide oligomers are mostly made of monomers linearly assembled side by side. Using a new adherence assay, we demonstrate that, functionally, oligomerization is mandatory for the adhesive potency of CX3CL1. Our results indicate that CX3CL1-dependent cellular adherence in key immune processes can be controlled by disrupting clusters using heterotopic peptides, which, in turn, alter the adhesive function of the membrane CX3CL1 without affecting the function of the CX3CL1 soluble form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.