BackgroundChagas disease is due to the parasite Trypanosoma cruzi, a protist disseminated by a Triatome vector. This disease is endemic to Latin America and considered by WHO as one of the 17 world’s neglected diseases. In Europe and in North America, imported cases are also detected, due to migration of population outside of the endemic region. Diagnosis of T. cruzi infection is usually made indirectly by the detection of specific antibodies to T. cruzi antigens. Following initial diagnostic evaluation or screening test (qualifying or discarding blood donation), a confirmation test is performed for samples initially reactive. The test presented in this study aims at the confirmation/refutation of the infectious status of human blood samples and will permit taking appropriate clinical measures.Methodology/Principal FindingsWe designed a novel array of twelve antigens and printed these antigens onto 96-well plates. We tested 248 positive samples T. cruzi, 94 unscreened blood donors’ samples from non-endemic area, 49 seronegative blood donors, 7 false-positive and 3 doubtful samples. The observed reactivities were analyzed to propose a decision-tree algorithm that correctly classifies all the samples, with the potential to discriminate false-positive results and sticky samples. We observed that antibodies levels (Sum of all antigens) was significantly higher for PCR positive than for PCR negative samples in all studied groups with Multi-cruzi.Conclusion/SignificanceThe results described in this study indicate that the Multi-cruzi improves the serological confirmation of Chagas disease. Moreover the “sum of all antigens” detected by Multi-cruzi could reflect parasitemia level in patients–like PCR signals does—and could serve as an indicator of parasite clearance in longitudinal follow-ups. Validation of this assay is still required on an independent large collection of well characterized samples including typical false-reactive samples such as Leishmaniasis.
BackgroundTrypanosoma cruzi parasite, the causative agent of Chagas disease, infects about six million individuals in more than 20 countries. Monitoring parasite persistence in infected individuals is of utmost importance to develop and evaluate treatments to control the disease. Routine screening for infected human individuals is achieved by serological assays; PCR testing to monitor spontaneous or therapy-induced parasitological cure has limitations due to the low and fluctuating parasitic load in circulating blood. The aim of the present study is to evaluate a newly developed antibody profiling assay as an indirect method to assess parasite persistence based on waning of antibodies following spontaneous or therapy-induced clearance of the infection.Methodology/Principal findingsWe designed a multiplex serology assay, an array of fifteen optimized T. cruzi antigens, to evaluate antibody diversity in 1654 serum samples from chronic Chagas patients. One specific antibody response (antibody 3, Ab3) showed a strong correlation with T. cruzi parasite persistence as determined by T. cruzi PCR positive results. High and sustained Ab3 signal was strongly associated with PCR positivity in untreated patients, whereas significant decline in Ab3 signals was observed in BZN-treated patients who cleared parasitemia based on blood PCR results.Conclusion/SignificanceAb3 is a new surrogate biomarker that strongly correlates with parasite persistence in chronic and benznidazole-treated Chagas patients. We hypothesize that Ab3 is induced and maintained by incessant stimulation of the immune system by tissue-based and shed parasites that are not consistently detectable by blood based PCR techniques. Hence, a simple immunoassay measurement of Ab3 could be beneficial for monitoring the infectious status of seropositive patients.
BackgroundCurrently, serodiagnosis of infection with the helminth parasite Onchocerca volvulus is limited to the Ov-16 IgG4 test, a test that has limited sensitivity and suboptimal specificity. In previous studies, we identified several linear epitopes that have the potential to supplement the diagnostic toolbox for onchocerciasis.MethodsIn this study three peptides, bearing in total six linear epitopes were transferred to a multiplex ELISA platform. This multiplex ELISA was used to assess the clinical utility of the peptide serology markers by analyzing sample sets from both O. volvulus endemic and non-endemic regions.ResultsThe multiplex platform was shown to be reproducible and data obtained on the multiplex platform were comparable to the singleplex ELISA data. The clinical utility assessment showed that in a population of school-aged children from western Kenya, a virtually O. volvulus-free area, significant cross-reactivity with an as-yet to be determined immunogen was detected.ConclusionsThe observations made in this study invalidate the usefulness of the peptide serology markers for onchocerciasis detection. We discuss what could be the origin of this unexpected serological response, but also highlight the need for better characterized biobanks for biomarker discovery activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.