Purpose Triple-negative breast cancer (TNBC) is characterized by an unfavorable prognosis and missing systemic therapeutic approaches beside chemotherapy. Targeting the immune checkpoint PD-1/PD-L1 showed promising results in breast cancer and especially in TNBC. The extracellular signal-regulated kinase 1/2 (ERK1/2) is an important driver of carcinogenesis. Here, the effect of combined PD-1/PD-L1 and ERK1/2 inhibitor treatment is investigated of cell growth and intracellular impact of breast cancer cell lines. Methods The IC50 values of each inhibitor and the effect of combined treatment were determined in three TNBC cell lines of different subtypes and one non-TNBC cell line. Phospho-specific antibodies were used in western blot analyses to investigate an effect on ERK1/2 activation. Expressions of immune modulatory and cell cycle-associated genes were examined by quantitative reverse transcription PCR. Results Both inhibitors PD-1/PD-L1 and ERK1/2 impeded the proliferation of TNBC to a higher extent than of non-TNBC. By combined treatment, cell lines were inhibited either synergistically or additively. ERK1/2 and S6 phosphorylation were reduced and expressions of c-Fos and FosL were diminished after ERK1/2 inhibitor as single and combined treatment. Between genes involved in immune modulation, IL-8 was upregulated in TNBC cells after combined treatment. Conclusion In conclusion, combination of PD-1/PD-L1 and ERK1/2 inhibitors showed favorable effects for a new therapy strategy, with better results in TNBC cell lines than in non-TNBC cells. The effects have to be validated in models that can reflect the interaction between immune and tumor cells like the situation in the tumor micro-environment.
Purpose: Triple negative breast cancer (TNBC) is characterized by an unfavorable prognosis and missing systemic therapeutic approaches beside chemotherapy. Targeting the immune checkpoint PD-1/PD-L1 showed promising results in breast cancer and especially in TNBC. The extracellular signal-regulated kinase 1/2 (ERK1/2) is an important driver of carcinogenesis. Here, the effect of combined PD-1/PD-L1 and ERK1/2 inhibitor treatment is investigated of cell growth and intracellular impact of breast cancer cell lines.Methods: The IC50 values of each inhibitor and the effect of combined treatment were determined in three TNBC cell lines of different subtypes and one non-TNBC cell line. Phospho-specific antibodies were used in western blot analyses to investigate an effect on ERK1/2 activation. Expression of immune modulatory and cell cycle associated genes were examined by quantitative reverse transcription PCR.Results: Both inhibitors PD-1/PD-L1 and ERK1/2 impeded the proliferation of TNBC to a higher extent than of non-TNBC. By combined treatment cell lines were inhibited either synergistically or additively. ERK1/2 and S6 phosphorylation were reduced and expression of c-Fos and FosL were diminished after ERK1/2 inhibitor as single and combined treatment. Between genes involved in immune modulation, IL-8 was upregulated in TNBC cells after combined treatment.Conclusion: In conclusion, combination of PD-1/PD-L1 and ERK1/2 inhibitors showed favorable effects for a new therapy strategy, with better results in TNBC cell lines than in non-TNBC. The effects have to be validated in models that can reflect the interaction between immune and tumor cells like the situation in the tumor micro environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.