IntroductionAlzheimer's disease (AD) patients are at risk of nutritional insufficiencies because of physiological and psychological factors. Recently, we showed the results of the meta-analyses indicating lower plasma levels of vitamins A, B12, C, E, and folate in AD patients compared with cognitively intact elderly controls (controls). Now, additional and more extensive literature searches were performed selecting studies which compare blood and brain/cerebrospinal fluid (CSF) levels of vitamins, minerals, trace elements, micronutrients, and fatty acids in AD patients versus controls.MethodsThe literature published after 1980 in Cochrane Central Register of Controlled Trials, Medline, and Embase electronic databases was systematically analyzed using Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines to detect studies meeting the selection criteria. Search terms used are as follows: AD patients, Controls, vitamins, minerals, trace elements, micronutrients, and fatty acids. Random-effects meta-analyses using a linear mixed model with correction for age differences between AD patients and controls were performed when four or more publications were retrieved for a specific nutrient.ResultsRandom-effects meta-analyses of 116 selected publications showed significant lower CSF/brain levels of docosahexaenoic acid (DHA), choline-containing lipids, folate, vitamin B12, vitamin C, and vitamin E. In addition, AD patients showed lower circulatory levels of DHA, eicosapentaenoic acid, choline as phosphatidylcholine, and selenium.ConclusionThe current data show that patients with AD have lower CSF/brain availability of DHA, choline, vitamin B12, folate, vitamin C, and vitamin E. Directionally, brain nutrient status appears to parallel the lower circulatory nutrient status; however, more studies are required measuring simultaneously circulatory and central nutrient status to obtain better insight in this observation. The brain is dependent on nutrient supply from the circulation, which in combination with nutrient involvement in AD-pathophysiological mechanisms suggests that patients with AD may have specific nutritional requirements. This hypothesis could be tested using a multicomponent nutritional intervention.
No abstract
Atypical antipsychotic drugs such as Olanzapine induce weight gain and metabolic changes associated with the development of type 2 diabetes. The mechanisms underlying the metabolic side-effects of these centrally acting drugs are still unknown to a large extent. We compared the effects of peripheral (intragastric; 3 mg/kg/h) versus central (intracerebroventricular; 30 µg/kg/h) administration of Olanzapine on glucose metabolism using the stable isotope dilution technique (Experiment 1) in combination with low and high hyperinsulinemic-euglycemic clamps (Experiments 2 and 3), in order to evaluate hepatic and extra-hepatic insulin sensitivity, in adult male Wistar rats. Blood glucose, plasma corticosterone and insulin levels were measured alongside endogenous glucose production and glucose disappearance. Livers were harvested to determine glycogen content. Under basal conditions peripheral administration of Olanzapine induced pronounced hyperglycemia without a significant increase in hepatic glucose production (Experiment 1). The clamp experiments revealed a clear insulin resistance both at hepatic (Experiment 2) and extra-hepatic levels (Experiment 3). The induction of insulin resistance in Experiments 2 and 3 was supported by decreased hepatic glycogen stores in Olanzapine-treated rats. Central administration of Olanzapine, however, did not result in any significant changes in blood glucose, plasma insulin or corticosterone concentrations nor in glucose production. In conclusion, acute intragastric administration of Olanzapine leads to hyperglycemia and insulin resistance in male rats. The metabolic side-effects of Olanzapine appear to be mediated primarily via a peripheral mechanism, and not to have a central origin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.