Tiacumicin B is an antibiotic endowed with the remarkable ability to interact with a new biological target, giving it an inestimable potential in the context of the ever-growing and worrisome appearance of resistances of bacteria and mycobacteria to antibiotics. The synthesis of an aglycone of tiacumicin B ready for glycosylation is reported. The key steps of this approach are a [2,3]-Wittig rearrangement, a Pd/Cu-catalyzed allene-alkyne cross-coupling, a E-selective cross-metathesis, and a final ring-size selective macrolactonization.
Our study of the synthesis of the aglycone of tiacumicin B is discussed here. We imagined two possible strategies featuring a main retrosynthetic disconnection between C13 and C14. The first strategy was based on Suzuki-Miyaura cross-coupling of 1,1-dichloro-1-alkenes, but the failure of this pathway led us to use a Pd/Cu-dual-catalyzed cross-coupling of alkynes with allenes that had never been implemented before in a total synthesis context. We used density functional theory calculations to guide our strategic choices concerning a [2.3]-Wittig rearrangement step and the final ring-size selective Yamaguchi macrolactonization. This led to two syntheses of the aglycone of tiacumicin B, with one of last generation delivering ultimately an adequately protected and glycosylation-ready aglycone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.