contributed equally to this work Mice deficient for the mouse telomerase RNA (mTR -/-) and lacking telomerase activity can only be bred for approximately six generations due to decreased male and female fertility and to an increased embryonic lethality associated with a neural tube closure defect. Although late generation mTR -/-mice show defects in the hematopoietic system, they are viable to adulthood, only showing a decrease in viability in old age. To assess the contribution of genetic background to the effect of telomerase deficiency on viability, we generated mTR -/-mutants on a C57BL6 background, which showed shorter telomeres than the original mixed genetic background C57BL6/129Sv. Interestingly, these mice could be bred for only four generations and the survival of late generation mTR -/-mice decreased dramatically with age as compared with their wild-type counterparts. Fifty percent of the generation 4 mice die at only 5 months of age. This decreased viability with age in the late generation mice is coincident with telomere shortening, sterility, splenic atrophy, reduced proliferative capacity of B and T cells, abnormal hematology and atrophy of the small intestine. These results indicate that telomere shortening in mTR -/-mice leads to progressive loss of organismal viability.
During CNS development, combinatorial expression of transcription factors controls neuronal subtype identity and subsequent axonal trajectory. Regulatory genes designating the routing of retinal ganglion cell (RGC) axons at the optic chiasm to the appropriate hemisphere, a pattern critical for proper binocular vision, have not been identified. Here, we show that the zinc finger transcription factor Zic2, a vertebrate homolog of the Drosophila gene odd-paired, is expressed in RGCs with an uncrossed trajectory during the period when this subpopulation grows from the ventrotemporal retina toward the optic chiasm. Loss- and gain-of-function analyses indicate that Zic2 is necessary and sufficient to regulate RGC axon repulsion by cues at the optic chiasm midline. Moreover, Zic2 expression reflects the extent of binocularity in different species, suggesting that Zic2 is an evolutionarily conserved determinant of RGCs that project ipsilaterally. These data provide evidence for transcriptional coding of axon pathfinding at the midline.
Telomerase is a ribonucleoprotein complex that elongates telomeres, allowing the stable maintenance of chromosomes during multiple cell divisions. Here, we describe the isolation and characterization of the catalytic subunit of mouse telomerase, mTERT (mouse telomerase reverse transcriptase), an essential protein component of the telomerase complex. During embryonic development, mTERT mRNA is abundantly expressed in the whole embryo, especially in regions of intense proliferation. We found that the mTERT mRNA expression in both embryonic and adult tissues is independent of the essential RNA component of telomerase, mTR, and therefore, of the formation of active telomerase complexes. mTERT protein is present exclusively in tissues with telomerase activity, such as testis, spleen, and thymus. mTERT protein is barely detectable in the thymus of mTR ؊/؊ mice, suggesting that mTERT protein stability in this tissue may depend on the actual assembly of active telomerase complexes. Finally, we found that mouse and human telomerase catalytic subunit is located in the cell nucleus, and its localization is not regulated during cell cycle progression.
Here we show a correlation between telomere length and organismal sensitivity to ionizing radiation (IR) in mammals. In particular, fifth generation (G5) mouse telomerase RNA (mTR) Ϫ / Ϫ mice, with telomeres 40% shorter than in wild-type mice, are hypersensitive to cumulative doses of gamma rays. 60% of the irradiated G5 mTR Ϫ / Ϫ mice die of acute radiation toxicity in the gastrointestinal tract, lymphoid organs, and kidney. The affected G5 mTR Ϫ / Ϫ mice show higher chromosomal damage and greater apoptosis than similarly irradiated wildtype controls. Furthermore, we show that G5 mTR Ϫ / Ϫ mice show normal frequencies of sister chromatid exchange and normal V(D)J recombination, suggesting that short telomeres do not significantly affect the efficiency of DNA double strand break repair in mammals. The IR-sensitive phenotype of G5 mTR Ϫ / Ϫ mice suggests that telomere function is one of the determinants of radiation sensitivity of whole animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.