Real-time positioning on mobile devices using global navigation satellite system (GNSS) technology paired with radio frequency (RF) transmission (GNSS-RF) may help to improve safety on logging operations by increasing situational awareness. However, GNSS positional accuracy for ground workers in motion may be reduced by multipath error, satellite signal obstruction, or other factors. Radio propagation of GNSS locations may also be impacted due to line-of-sight (LOS) obstruction in remote, forested areas. The objective of this study was to characterize the effects of forest stand characteristics, topography, and other LOS obstructions on the GNSS accuracy and radio signal propagation quality of multiple Raveon Atlas PT GNSS-RF transponders functioning as a network in a range of forest conditions. Because most previous research with GNSS in forestry has focused on stationary units, we chose to analyze units in motion by evaluating the time-to-signal accuracy of geofence crossings in 21 randomly-selected stands on the University of Idaho Experimental Forest. Specifically, we studied the effects of forest stand characteristics, topography, and LOS obstructions on (1) the odds of missed GNSS-RF signals, (2) the root mean squared error (RMSE) of Atlas PTs, and (3) the time-to-signal accuracy of safety geofence crossings in forested environments. Mixed-effects models used to analyze the data showed that stand characteristics, topography, and obstructions in the LOS affected the odds of missed radio signals while stand variables alone affected RMSE. Both stand characteristics and topography affected the accuracy of geofence alerts.
Logging is one of the most hazardous occupations in the United States. Real-time positioning that uses global navigation satellite system (GNSS) technology paired with radio frequency transmission (GNSS-RF) has the potential to reduce fatal and non-fatal accidents on logging operations through the use of geofences that define safe work areas. Until recently, most geofences have been static boundaries. The aim of this study was to evaluate factors affecting mobile geofence accuracy in order to determine whether virtual safety zones around moving ground workers or equipment are a viable option for improving situational awareness on active timber sales. We evaluated the effects of walking pace, transmission interval, geofence radius, and intersection angle on geofence alert delay using a replicated field experiment. Simulation was then used to validate field results and calculate the proportion of GNSS error bearings resulting in early alerts. The interaction of geofence radius and intersection angle affected safety geofence alert delay in the field experiment. The most inaccurate alerts were negative, representing early warning. The magnitude of this effect was largest at the greatest intersection angles. Simulation analysis supported these field results and also showed that larger GNSS error corresponded to greater variability in alert delay. Increasing intersection angle resulted in a larger proportion of directional GNSS error that triggered incorrect, early warnings. Because the accuracy of geofence alerts varied greatly depending on GNSS error and angle of approach, geofencing for occupational safety is most appropriate for general situational awareness unless real-time correction methods to improve accuracy or higher quality GNSS-RF transponders are used.
In this paper, we provide an overview of positioning systems for moving resources in forest and fire management and review the related literature. Emphasis is placed on the accuracy and range of different localization and location-sharing methods, particularly in forested environments and in the absence of conventional cellular or internet connectivity. We then conduct a second review of literature and concepts related to several emerging, broad themes in data science, including the terms location-based services (LBS), geofences, wearable technology, activity recognition, mesh networking, the Internet of Things (IoT), and big data. Our objective in this second review is to inform how these broader concepts, with implications for networking and analytics, may help to advance natural resource management and science in the future. Based on methods, themes, and concepts that arose in our systematic reviews, we then augmented the paper with additional literature from wildlife and fisheries management, as well as concepts from video object detection, relative positioning, and inventory-tracking that are also used as forms of localization. Based on our reviews of positioning technologies and emerging data science themes, we present a hierarchical model for collecting and sharing data in forest and fire management, and more broadly in the field of natural resources. The model reflects tradeoffs in range and bandwidth when recording, processing, and communicating large quantities of data in time and space to support resource management, science, and public safety in remote areas. In the hierarchical approach, wearable devices and other sensors typically transmit data at short distances using Bluetooth, Bluetooth Low Energy (BLE), or ANT wireless, and smartphones and tablets serve as intermediate data collection and processing hubs for information that can be subsequently transmitted using radio networking systems or satellite communication. Data with greater spatial and temporal complexity is typically processed incrementally at lower tiers, then fused and summarized at higher levels of incident command or resource management. Lastly, we outline several priority areas for future research to advance big data analytics in natural resources.
Geofences are virtual boundaries based on geographic coordinates. When combined with global position system (GPS), or more generally global navigation satellite system (GNSS) transmitters, geofences provide a powerful tool for monitoring the location and movements of objects of interest through proximity alarms. However, the accuracy of geofence alarms in GNSS-radio frequency (GNSS-RF) transmitter receiver systems has not been tested. To achieve these goals, a cart with a GNSS-RF locator was run on a straight path in a balanced factorial experiment with three levels of cart speed, three angles of geofence intersection, three receiver distances from the track, and three replicates. Locator speed, receiver distance and geofence intersection angle all affected geofence alarm accuracy in an analysis of variance (p = 0.013, p = 2.58 × 10−8, and p = 0.0006, respectively), as did all treatment interactions (p < 0.0001). Slower locator speed, acute geofence intersection angle, and closest receiver distance were associated with reduced accuracy of geofence alerts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.