Positron Emission Tomography (PET) image segmentation is essential for detecting lesions and quantifying their metabolic activity. Due to the spatial and spectral properties of PET images, most methods rely on intensity-based strategies. Recent methods also propose to integrate anatomical priors to improve the segmentation process. In this article, we show how the hierarchical approaches proposed in mathematical morphology can efficiently handle these different strategies. Our contribution is twofold. First, we present the component-tree as a relevant data-structure for developing interactive, real-time, intensity-based segmentation of PET images. Second, we prove that thanks to the recent concept of shaping, we can efficiently involve a priori knowledge for lesion segmentation, while preserving the good properties of component-tree segmentation. Preliminary experiments on synthetic and real PET images of lymphoma demonstrate the relevance of our approach.
International audiencePositron Emission Tomography (PET) using 18 F-FDG is recognized as the modality of choice for lymphoma, due to its high sensitivity and specificity. Its wider use for the detection of lesions, quantifica-tion of their metabolic activity and evaluation of response to treatment demands the development of accurate and reproducible quantitative image interpretation tools. An accurate tumour delineation remains a challenge in PET, due to the limitations the modality suffers from, despite being essential for quantifying reliable changes in tumour tissues. Due to the spatial and spectral properties of PET images , most methods rely on intensity-based strategies. Recent methods also propose to integrate anatomical priors to improve the seg-mentation process. However, the current routinely-used approach remains a local relative thresholding and requires important user interaction , leading to a process that is not only user-dependent but very laborious in the case of lymphomas. In this paper, we propose to rely on hierarchical image models embedding multimodality PET/CT de-scriptors for a fully automated PET lesion detection / segmenta-tion, performed via a machine learning process. More precisely, we propose to perform random forest classification within the mixed spatial-spectral space of component-trees modeling PET/CT mages. This new approach, combining the strengths of machine learning and morphological hierarchy models leads to intelligent thresholding based on high-level PET/CT knowledge. We evaluate our approach on a database of multi-centric PET/CT images of patients treated for lymphoma, delineated by an expert. Our method provides good efficiency, with the detection of 92% of all lesions, and accurate seg-mentation results with mean sensitivity and specificity of 0.73 and 0.99 respectively, without any user interaction
Component-trees constitute an efficient data structure for hierarchical image modeling. In particular they are relevant for processing and analyzing images where the structures of interest correspond either to local maxima or local minima of intensity. This is indeed the case of functional data in medical imaging. This motivates the use of component-treebased approaches for analyzing Positron Emission Tomography (PET) images in the context of oncology. In this article, we present a simple, yet efficient, methodological framework for PET image analysis based on componenttrees. More precisely, we show that the second-order paradigm of shaping, that broadly consists of computing the component-tree of a component-tree, provides a relevant way of generalizing the threshold-based strategies classically used by medical practitioners for handling PET images. In addition, it also allows to embed relevant priors regarding the sought cancer lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.