A persistent problem in modern health care derives from the overwhelming presence of antibiotic-resistant microbes on biomaterials, more specifically, fungal growth on metal-based implants. This study seeks to investigate the antifungal properties of low-level electrochemical treatments delivered using titanium electrodes against Candida albicans. We show that C. albicans can be readily controlled with electrical currents/potentials, reducing the number of viable planktonic cells by 99.7% and biofilm cells by 96.0–99.99%. Additionally, this study explores the ability of the electrochemical treatments to potentiate fluconazole, a clinically used antifungal drug. We have found that electrochemical treatment substantially enhances fluconazole killing activity. While fluconazole alone exhibits a low efficiency against the stationary phase and biofilm cells of C. albicans, complete eradication corresponding to 7-log killing is achieved when the antifungal drug is provided subsequently to the electrochemical treatment. Further mechanistic analyses have revealed that the sequential treatment shows a complex multimodal action, including the disruption of cell wall integrity and permeability, impaired metabolic functions, and enhanced susceptibility to fluconazole, while altering the biofilm structure. Altogether, we have developed and optimized a new therapeutic strategy to sensitize and facilitate the eradication of fluconazole-tolerant microbes from implantable materials. This work is expected to help advance the use of electrochemical approaches in the treatment of infections caused by C. albicans in both nosocomial and clinical cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.