Exercise-mediated reduction of hypothalamic TRB3 protein levels may be associated with reduction of ER stress. These data provide a new mechanism by which an acute exercise session improves insulin sensitivity in the hypothalamus and restores food intake control in obesity.
Key points summaryr When the hepatic insulin signaling is compromised, there is an inadequate suppression of gluconeogenic pathways, leading the organism to high levels of glucose.r Studies with animals with obesity induced by high fat diet or genetically modified showed increased MKP-3 expression and MKP-3/Foxo1 association in liver, with a consequent increase in blood glucose concentration, development of insulin resistance and DM2.r As a non-pharmacological strategy recognized and indicated for prevention and treatment of diabetes is the regular practice of physical exercise.r In this study we demostrated that physical training is an important tool capable of reducing insulin resistance in the liver by reducing the inflammatory process, including the inhibition of MKP-3 and, therefore, suppress gluconeogenic program in obesity rats.r The understanding of these new mechanisms by which physical training regulates glucose homeostasis has critical importance to health professionals for the understanding and prevention of diabetes.Abstract Insulin plays an important role in the control of hepatic glucose production. Insulin resistant states are commonly associated with excessive hepatic glucose production, which contributes to both fasting hyperglycaemia and exaggerated postprandial hyperglycaemia. In this regard, increased activity of phosphatases may contribute to the dysregulation of gluconeogenesis. Mitogen-activated protein kinase phosphatase-3 (MKP-3) is a key protein involved in the control of gluconeogenesis. MKP-3-mediated dephosphorylation activates FoxO1 (a member of the forkhead family of transcription factors) and subsequently promotes its nuclear translocation and binding to the promoters of gluconeogenic genes such as phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase). In this study, we investigated the effects of exercise training on the expression of MKP-3 and its interaction with FoxO1 in the livers of obese animals. We found that exercised obese mice had a lower expression of MKP-3 and FoxO1/MKP-3 association in the liver. Further, the exercise training decreased FoxO1 phosphorylation and protein levels of Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and gluconeogenic enzymes (PEPCK and G6Pase). These molecular results were accompanied by physiological changes, including increased insulin sensitivity and reduced hyperglycaemia, which were not caused by reductions in total body mass. Similar results were also observed with oligonucleotide antisense (ASO) treatment. However, our results showed that only exercise training could reduce an obesity-induced increase in HNF-4α protein levels while ASO treatment alone had no effect. These findings could explain, at least in part, why additive effects of exercise training treatment and ASO treatment were not observed. Finally, the suppressive effects of exercise training on MKP-3 protein levels appear to be related, at least in part, to the reduced phosphorylation of Extracellular signal-regulated...
Introdução: A deficiência na captação de glicose em tecidos periféricos e o aumento da gliconeogênese hepática são fenômenos fisiopatológicos observados em pacientes diabéticos do tipo 2. O exercício físico é considerado um importante aliado para a melhora do perfil glicêmico em pacientes diabéticos; entretanto, os mecanismos envolvidos nesse processo não estão completamente elucidados. Objetivo: Avaliar o papel da proteína AMPk no controle glicêmico em camundongos diabéticos após o exercício físico. Métodos: Durante o jejum, o teste de tolerância à insulina (ITT) e a técnica de Western blot foram combinados para avaliar a homeostase da glicose em camundongos diabéticos (ob/ob e db/db) submetidos a uma única sessão de natação. Resultados: A hiperglicemia de jejum, a severa resistência à insulina e a deficiência na sinalização da via AMPk/ACC no músculo e no fígado observadas nos camundongos diabéticos foram revertidas após a sessão de exercício. A restauração da via AMPk/ACC reduziu a expressão da enzima gliconeogênica PEPCk no fígado e aumentou a translocação do GLUT4 no músculo esquelético. Esses dados apontam que a ativação da via AMPk/ACC induzida pelo exercício físico é importante para a redução da glicemia de jejum em modelos experimentais de diabetes tipo 2. Esses dados abrem novas frentes para o entendimento de como a atividade física controla da homeostase da glicose em pacientes diabéticos.Palavras-chave: exercício agudo, diabetes tipo 2, ob/ob, db/db, músculo, fígado. aBStRaCtIntroduction: The deficiency in glucose uptake in peripheral tissues and increased hepatic gluconeogenesis are physiopathological phenomena observed in type 2 diabetes patients. Physical exercise plays an important role in the improvement of glycemic profile in diabetic patients; however, the mechanisms involved in these processes have not been fully elucidated. Objective: to assess the role of AMPk protein in the glycemic control of diabetic mice after exercise. Methods: During fasting condition, the insulin tolerance test (ITT) and Western blot technique, were combined to assess the glucose homeostasis in diabetic mice (ob/ob and db/db) after a single swimming session. Results: Fasting hyperglycemia, severe insulin resistance and deficiency in the AMPk/ACC signaling in muscle and liver observed in the diabetic mice were reversed after the exercise session. The restoration of AMPk/ACC signaling reduced the expression of the gluconeogenic enzyme, PEPCk in the liver, and increased the translocation of GLUT4 in the skeletal muscle. These data indicate that the activation of AMPk/ACC pathway induced by physical exercise is important to reduce fasting glucose levels in experimental models of type 2 diabetes. These data open new insights for determination of physical activity control on the glucose homeostasis in diabetic patients.
This study investigated the effects of exercise training in regulating inflammatory processes, endoplasmic reticulum stress, and apoptosis in hypothalamic neurons of obese mice. Swiss mice were distributed into three groups: Lean mice (Lean), sedentary animals fed a standard diet; obese mice (Obese), sedentary animals fed a high-fat diet (HFD); trained obese mice (T. Obese), animals fed with HFD and concurrently subjected to an endurance training protocol for 8 weeks. In the endurance training protocol, mice ran on a treadmill at 60% of peak workload for 1 hr, 5 days/week for 8 weeks. Twenty-four hours after the last exercise session, the euthanasia was performed. Western blot, quantitative real-time polymerase chain reaction, and terminal deoxynucleotide transferase biotin-dUTP nick end-labeling (TUNEL) techniques were used for the analysis of interest. The results show exercise training increased phosphorylation of leptin signaling pathway proteins (pJAK2/pSTAT3) and reduced the content of tumor necrosis factor α, toll-like receptor 4, suppressor of cytokine signaling 3, protein-tyrosine phosphatase 1B as well as the phosphorylation of IkB kinase in the hypothalamus of T. Obese animals. A reduction of macrophage activation and phosphorylation of eukaryotic initiation factor 2α, and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were also observed in exercised animals. Furthermore, exercise decreased the expression of the proapoptotic protein (PARP1) and increased anti-inflammatory (IL-10) and antiapoptotic (Bcl2) proteins. Using the TUNEL technique, we observed that the exercised animals had lower DNA fragmentation. Finally, physical exercise preserved pro-opiomelanocortin messenger RNA content. In conclusion, exercise training was able to reorganize the control of the energy balance through anti-inflammatory and antiapoptotic responses in hypothalamic tissue of obese mice.
Objective:To investigate the effects of different intensities of acute exercise on insulin sensitivity and protein kinase B/Akt activity in skeletal muscle of obese mice.Methods:Swiss mice were randomly divided into four groups, and fed either a standard diet (control group) or high fat diet (obese sedentary group and obese exercise group 1 and 2) for 12 weeks. Two different exercise protocols were used: swimming for 1 hour with or without an overload of 5% body weight. The insulin tolerance test was performed to estimate whole-body sensitivity. Western blot technique was used to determine protein levels of protein kinase B/Akt and phosphorylation by protein Kinase B/Akt in mice skeletal muscle.Results:A single bout of exercise inhibited the high fat diet-induced insulin resistance. There was increase in phosphorylation by protein kinase B/Akt serine, improve in insulin signaling and reduce of fasting glucose in mice that swam for 1 hour without overload and mice that swan for 1 hour with overload of 5%. However, no significant differences were seen between exercised groups.Conclusion:Regardless of intensity, aerobic exercise was able to improve insulin sensitivity and phosphorylation by protein kinase B/Ak, and proved to be a good form of treatment and prevention of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.