Background Repetitive transcranial magnetic stimulation (rTMS) is widely used in both research and clinical settings to modulate human brain function and behavior through the engagement of the mechanisms of plasticity. Based upon experiments using single-pulse TMS as a probe, the physiologic mechanism of these effects is often assumed to be via changes in cortical excitability, with 10 Hz rTMS increasing and 1 Hz rTMS decreasing the excitability of the stimulated region. However, the reliability and reproducibility of these rTMS protocols on cortical excitability across and within individual subjects, particularly in comparison to robust sham stimulation, have not been systematically examined. Objectives In a cohort of 28 subjects (39 ± 16 years), we report the first comprehensive study to (1) assess the neuromodulatory effects of traditional 1 Hz and 10 Hz rTMS on corticospinal excitability against both a robust sham control, and two other widely used patterned rTMS protocols (intermittent theta burst stimulation, iTBS; and continuous theta burst stimulation, cTBS), and (2) determine the reproducibility of all rTMS protocols across identical repeat sessions. Results At the group level, neither 1 Hz nor 10 Hz rTMS significantly modulated corticospinal excitability. 1 Hz and 10 Hz rTMS were also not significantly different from sham and both TBS protocols. Reproducibility was poor for all rTMS protocols except for sham. Importantly, none of the real rTMS and TBS protocols demonstrated greater neuromodulatory effects or reproducibility after controlling for potential experimental factors including baseline corticospinal excitability, TMS coil deviation and the number of individual MEP trials. Conclusions These results call into question the effectiveness and reproducibility of widely used rTMS techniques for modulating corticospinal excitability, and suggest the need for a fundamental rethinking regarding the potential mechanisms by which rTMS affects brain function and behavior in humans.
Rationale The nature and predictors of insensitivity to aversive consequences of heroin + cocaine polysubstance use are not well characterized. Objectives Translational methods incorporating a tightly controlled animal model of drug self-administration and measures of inhibitory control and avoidance behavior might be helpful for clarifying this issue. Methods The key approach for distinguishing potential contributions of pre-existing inhibitory control deficits vs. drug use history in meditating insensitivity to aversive consequences was comparison of two rat strains: Wistar (WIS/Crl), an outbred strain, and the spontaneously hypertensive rat (SHR/NCrl), an inbred strain shown previously to exhibit heightened cocaine and heroin self-administration and poor inhibitory control relative to WIS/Crl. Results In separate tasks, SHR/NCrl displayed greater impulsive action and compulsive-like behavior than WIS/Crl prior to drug exposure. Under two different schedules of drug delivery, SHR/NCrl self-administered more cocaine than WIS/Crl, but self-administered a similar amount of heroin + cocaine as WIS/Crl. When half the session cycles were punished by random foot shock, SHR/NCrl initially were less sensitive to punishment than WIS/Crl when self-administering cocaine, but were similarly insensitive to punishment when self-administering heroin + cocaine. Based on correlation analyses, only trait impulsivity predicted avoidance capacity in rats self-administering cocaine and receiving yoked-saline. In contrast, only amount of drug use predicted avoidance capacity in rats self-administering heroin + cocaine. Additionally, baseline drug seeking and taking predicted punishment insensitivity in rats self-administering cocaine or heroin + cocaine. Conclusions Based on the findings revealed in this animal model, human laboratory research concerning the nature and predictors of insensitivity to aversive consequences in heroin and cocaine polysubstance vs. monosubstance users is warranted. Supplementary Information The online version contains supplementary material available at 10.1007/s00213-022-06134-4.
Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine vulnerability traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated a number of premorbid addiction vulnerability traits and cocaine self-administration behaviors using a longitudinal within-subjects design. Trait impulsivity and compulsivity were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine abuse liability studied under fixed-ratio and chained schedules of cocaine self-administration. Trait compulsivity correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the chained schedule. Trait compulsivity also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22%-40% of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.