We present a new methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design. Complete information about the freespace and goal is encoded in the form of a special artificial potential function-a navigation function-that connects the kinematic planning problem with the dynamic execution problem in a provably correct fashion. The navigation function automatically gives rise to a bounded-torque feedback controller for the robot's actuators that guarantees collision-free motion and convergence to the destination from almost all initial free configurations. Since navigation functions exist for any robot and obstacle course, our methodology is completely general in principle. However, this paper is mainly concerned with certain constructive techniques for a particular class of motion planning problems. Specifically, we present a formula for navigation functions that guide a point-mass robot in a generalized sphere world. The simplest member of this family is a space obtained by puncturing a disc by an arbitrary number of smaller disjoint discs representing obstacles. The other spaces are obtained from this model by a suitable coordinate transformation that we show how to build. Our constructions exploit these coordinate transformations to adapt a navigation function on the model space to its more geometrically complicated (but topologically equivalent) instances. The formula that we present admits sphere-worlds of arbitrary dimension and is directly applicable to configuration spaces whose forbidden regions can be modeled by such generalized discs. We have implemented these navigation functions on planar scenarios, and simulation results are provided throughout the paper. Disciplines Robotics Comments
This paper concerns the construction of a class of scalar valued analytic maps on analytic manifolds with boundary. These maps, which we term navigation functions, are constructed on an arbitrary sphere world-a compact connected subset of Euclidean n-space whose boundary is formed from the disjoint union of a finite number of (n − l)-spheres. We show that this class is invariant under composition with analytic diffeomorphisms: our sphere world construction immediately generates a navigation function on all manifolds into which a sphere world is deformable. On the other hand, certain well known results of S. Smale guarantee the existence of smooth navigation functions on any smooth manifold. This suggests that analytic navigation functions exist, as well, on more general analytic manifolds than the deformed sphere worlds we presently consider.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.