Abstract:Methane is the second most important anthropogenically emitted greenhouse gas after carbon dioxide. Anthropogenic methane sources in the US are dominated by emissions from domestic ruminants and from fossil fuel exploration, storage and transmission. The fossil fuel source is primarily due to natural gas leaks along the production to distribution chain, and pipeline leaks in urban areas have been identified as a significant contributor. In this study, we evaluated possible leaks in three neighborhoods of a midsize Texas metropolitan region surrounding Texas A&M University through mobile measurements using a fast response, high precision methane analyzer. Neighborhoods were selected by age and land use, and each predetermined driving route was evaluated three times. Methane spikes exceeding 2.5 ppm were identified as leaks, and approximately one leak per mile of urban road was discovered. The largest leaks were found around the Texas A&M natural gas plant and in the oldest neighborhood to its north, while fewer leaks were found in a slightly younger neighborhood. No leaks were found in the youngest, less than 20-year old neighborhood suggesting that pipeline system age is a strong determinant of current and future leaks from the natural gas distribution system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.