Purpose To develop a patient‐based breast density model by characterizing the fibroglandular tissue distribution in patient breasts during compression for mammography and digital breast tomosynthesis (DBT) imaging. Methods In this prospective study, 88 breast images were acquired using a dedicated breast computed tomography (CT) system. The breasts in the images were classified into their three main tissue components and mechanically compressed to mimic the positioning for mammographic acquisition of the craniocaudal (CC) and mediolateral oblique (MLO) views. The resulting fibroglandular tissue distribution during these compressions was characterized by dividing the compressed breast volume into small regions, for which the median and the 25th and 75th percentile values of local fibroglandular density were obtained in the axial, coronal, and sagittal directions. The best fitting function, based on the likelihood method, for the median distribution was obtained in each direction. Results The fibroglandular tissue tends to concentrate toward the caudal (about 15% below the midline of the breast) and anterior regions of the breast, in both the CC‐ and MLO‐view compressions. A symmetrical distribution was found in the MLO direction in the case of the CC‐view compression, while a shift of about 12% toward the lateral direction was found in the MLO‐view case. Conclusions The location of the fibroglandular tissue in the breast under compression during mammography and DBT image acquisition is a major factor for determining the actual glandular dose imparted during these examinations. A more realistic model of the parenchyma in the compressed breast, based on patient image data, was developed. This improved model more accurately reflects the fibroglandular tissue spatial distribution that can be found in patient breasts, and therefore might aid in future studies involving radiation dose and/or cancer development risk estimation.
Breast magnetic resonance imaging (MRI) and x-ray mammography are two image modalities widely used for the early detection and diagnosis of breast diseases in women. The combination of these modalities leads to a more accurate diagnosis and treatment of breast diseases. The aim of this paper is to review the registration between breast MRI and x-ray mammographic images using patient-specific finite element-based biomechanical models. Specifically, a biomechanical model is obtained from the patient's MRI volume and is subsequently used to mimic the mammographic acquisition. Due to the different patient positioning and movement restrictions applied in each image modality, the finite element analysis provides a realistic physics-based approach to perform the breast deformation. In contrast with other reviews, we do not only expose the overall process of compression and registration but we also include main ideas, describe challenges, and provide an overview of the used software in each step of the process. Extracting an accurate description from the MR images and preserving the stability during the finite element analysis require an accurate knowledge about the algorithms used, as well as the software and underlying physics. The wide perspective offered makes the paper suitable not only for expert researchers but also for graduate students and clinicians. We also include several medical applications in the paper, with the aim to fill the gap between the engineering and clinical performance.
Digital Breast Tomosynthesis (DBT) is currently used as an adjunct technique to Digital Mammography (DM) for breast cancer imaging. Being a quasi-3D image, DBT is capable of providing depth information on the internal breast glandular tissue distribution, which may be enough to obtain an accurate patient-specific radiation dose estimate. However, for this, information regarding the location of the glandular tissue, especially in the vertical direction (i.e. x-ray source to detector), is needed. Therefore, a dedicated reconstruction algorithm designed to localize the amount of glandular tissue, rather than for optimal diagnostic value, could be desirable. Such a reconstruction algorithm, or, alternatively, a reconstructed DBT image classification algorithm, could benefit from the use of larger voxels, rather than the small sizes typically used for the diagnostic task. In addition, the Monte Carlo (MC) based dose estimates would be accelerated by the representation of the breast tissue with fewer and larger voxels. Therefore, in this study we investigate the optimal DBT reconstructed voxel size that allows accurate dose evaluations (i.e. within 5%) using a validated Geant4-based MC code. For this, sixty patient-based breast models, previously acquired using dedicated breast computed tomography (BCT) images, were deformed to reproduce the breast during compression under a given DBT scenario. Two re-binning approaches were applied to the compressed phantoms, leading to isotropic and anisotropic voxels of different volumes. MC DBT simulations were performed reproducing the acquisition geometry of a SIEMENS Mammomat Inspiration system. Results show that isotropic cubic voxels of 2.73 mm size provide a dose estimate accurate to within 5% for 51/60 patients, while a comparable accuracy is obtained with anisotropic voxels of dimension 5.46 × 5.46 × 2.73 mm3. In addition, the MC simulation time is reduced by more than half in respect to the original voxel dimension of 0.273 × 0.273 × 0.273 mm3 when either of the proposed re-binning approaches is used. No significant differences in the effect of binning on the dose estimates are observed (Wilcoxon-Mann-Whitney test, p-value > 0.4) between the 0° the 23° (i.e. the widest angular range) exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.