A study has been conducted of locomotive crashworthiness in a range of collision scenarios to support the efforts of the Locomotive Crashworthiness Working Group of the Federal Railroad Administration's Railroad Safety Advisory Committee (RSAC) to develop locomotive crashworthiness requirements. The RSAC is a government/industry committee including all segments of the rail community, with the purpose of developing solutions to safety regulatory issues. This paper presents the results of a study of the crashworthiness of conventional and modified locomotive designs in five collision scenarios. The five collision scenarios studied are:1. in-line collision of two locomotive-led trains with trailing locomotive overriding leading locomotive 2. in-line collision of two locomotive-led trains with one colliding locomotive overriding the other 3. locomotive grade crossing collision with highway vehicle hauling logs, with principal impact on locomotive window area 4. oblique collision, locomotive with intermodal trailer 5. oblique collision, locomotive with freight car
Three recent accidents involving the release of hazardous material have focused attention on the structural integrity of railroad tank cars:
On March 23, 2006, a full-scale test was conducted on a passenger train retrofitted with newly developed cab and coach car crush zone designs. This test was conducted as part of a larger testing program to establish the degree of enhanced performance of alternative design strategies for passenger rail crashworthiness. The alternative design strategy is referred to as Crash Energy Management (CEM) where the collision energy is absorbed in defined unoccupied locations throughout the train in a controlled progressive manner. By controlling the deformations at critical locations, the CEM train is able to protect against two very dangerous modes of deformation: override and large scale lateral buckling.The CEM train impacted a standing locomotive-led train of equal mass at 30.8 mph on tangent track. The interactions at the colliding interface and between coupled interfaces performed as designed. Crush was pushed back to subsequent crush zones, and the moving passenger train remained in-line and upright on the tracks with minimal vertical and lateral motions.This paper evaluates the functional performance of the crush zone components during the CEM test. The paper discusses three areas of the CEM consist: the leading cab car end, which interacts with a standing locomotive; the coupled interfaces, which connect the CEM non-cab end; and the trailing cab car end, which interacts with the attached trailing locomotive. The paper includes a description of the crush zone features and performance.The pushback coupler must absorb energy in a controlled progressive manner and prevent lateral buckling by allowing the ends of the cars to come together. The deformable anticlimbers are required to resolve non-longitudinal loads into planar loads through the integrated end frame while minimizing the potential for override. The energy absorbers must absorb energy in a controlled progressive manner. The engineer's space must be preserved so that the engineer can ride out the event. The passenger space must be preserved so that the passengers can ride out the event. The prototype CEM design presented in this paper met all the functional design requirements. This paper describes how the crush zones perform at three different interfaces. Areas for potential improvements include the design of the primary energy absorbers, the placement of the engineer's compartment, and the interaction between the last coach car and the trailing locomotive.
Over the past several years, Carbuilders have been developing car designs that utilize Crash Energy Management (CEM) as an alternative means to demonstrate compliance with carbody structural strength requirements. With the onset of CEM designs, the CFR has been amended to include requirements for alternative compliance to carbody structure requirements (see Docket No. FRA-2013-0060, Notice No. 3, [the Final Rule]) [14]. CEM designs often utilize crush zones with the overall goal of protecting occupant volume. These designs also change the structural behavior of the car during an accident, resulting in different acceleration responses than conventional car designs. This paper seeks to compare and contrast the interior fitting strength requirements between conventional car designs and a generic CEM design. The methodology utilizes simple mathematical simulations, modeling a conventional car design and a CEM design, with outputs of the simulation consisting of car response and behavior. Results indicate that alternative compliance requirements for all tiers of CEM-designed passenger equipment should be considered for interior fixtures.
Federal regulators and passenger railways are both concerned about passengers with mobility impairments that limit their ability to use stairways. Federal policy and railway practice strongly encourage development of services that allow for level boarding and alighting from commuter rail trains. In addition to benefiting individuals who have trouble using stairs, level boarding can lead to significant improvements in service delivery for the rest of the public by reducing unproductive station dwell times, improving safety, and creating opportunities to improve crew efficiency. One obstacle to level boarding has been concerns presented by the freight railroads that operate over (and often own) trackage shared with the commuter trains. The freight operators wish to maintain a full horizontal clearance envelope allowing unrestricted operations. These concerns often limit the close door–platform interface necessary for level boarding. This paper summarizes current Federal Transit Administration policy on level boarding, discusses the benefits of level boarding, reviews the tension between freight clearance concerns and level boarding, and reviews the state of the practice in serving passengers with mobility impairments. On the basis of an industry review, it highlights three innovations that have been implemented or considered to expand the scope of level boarding among North American commuter railroads. Finally, it provides recommendations for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.