Ephrin receptors (Ephs) are frequently overexpressed in a wide variety of human malignant tumors, being associated with tumor growth, invasion, angiogenesis and metastasis. The present study aimed to evaluate the clinical significance of EphB4 and EphB6 protein expression in human malignant and benign thyroid lesions. EphB4 and EphB6 protein expression was assessed immunohistochemically on paraffin-embedded thyroid tissues obtained from 127 patients with benign (n = 71) and malignant (n = 56) thyroid lesions. Enhanced EphB4 and EphB6 expression was more frequently observed in malignant compared to benign thyroid lesions (p = 0.0508 and p = 0.0006, respectively). EphB4 and EphB6 expression also provided a distinct discrimination between papillary carcinoma and hyperplastic nodules (p = 0.0302 and p = 0.0013, respectively). In malignant thyroid lesions, enhanced EphB4 expression was significantly associated with larger tumor size (p = 0.0366). Enhanced EphB6 expression was significantly associated with larger tumor size (p = 0.0366), the presence of lymph node metastases (p = 0.0023), the presence of capsular (p = 0.0038), lymphatic (p = 0.0053) and vascular invasion (p = 0.0018) and increased risk of recurrence rate (p = 0.0038). The present study supported evidence that EphB4 and mainly EphB6 may participate in the malignant thyroid transformation, reinforcing their utility as useful biomarkers and possible therapeutic targets in this type of neoplasia.
Although the protective role of HO-1 induction in various forms of kidney disease is well established, mechanisms other than heme catabolism to biliverdin, bilirubin and carbon monoxide have recently been identified. Unraveling these mechanisms requires the generation of appropriate animal models. The present study describes the generation of a HO-1 deficient Hmox1 rat model and characterizes its renal and extrarenal phenotype. Hmox1 rats had growth retardation and splenomegaly compared to their Hmox1 littermates. Focal segmental glomerulosclerosis-type lesions and interstitial inflammatory infiltrates were prominent morphologic findings and were associated with increased blood urea nitrogen, serum creatinine and albuminuria. There was no increase in iron deposition in glomeruli, tubules or interstitium. Iron deposition in spleen and liver was reduced. Electron microscopic examination of glomeruli revealed edematous podocytes with scant areas of foot process effacement but otherwise well preserved processes and slit-diaphragms. Of the filtration barrier proteins examined, β-catenin expression was markedly reduced both in glomeruli and extrarenal tissues. Since the rat is the preferred laboratory animal in experimental physiology and pathophysiology, the rat model of HO-1 deficiency may provide a novel tool for investigation of the role of this enzyme in renal function and disease.
Although Heme Oxygenase-1 (HO-1) induction in various forms of kidney injury is protective, its role in age-related renal pathology is unknown. In the ageing kidney there is nephron loss and lesions of focal glomerulosclerosis, interstitial fibrosis, tubular atrophy and arteriolosclerosis. Underlying mechanisms include podocyte (visceral glomerular epithelial cell/GEC) injury. To assess whether HO-1 can attenuate ageing-related lesions, rats with GEC-targeted HO-1 overexpression (GEC HO-1 rats) were generated using a Sleeping Beauty (SB) transposon system and extent of lesions over a 12-month period were assessed and compared to those in age-matched wild-type (WT) controls. GEC HO-1 rats older than 6 months developed albuminuria that was detectable at 6 months and became significantly higher compared to age-matched WT controls at 12 months. In GEC HO-1 rats, lesions of focal segmental and global glomerulosclerosis as well as tubulointerstitial lesions were prominent while podocytes were edematous with areas of foot process effacement and glomerular basement membrane thickening and wrinkling. GEC HO-1 rats also developed hemoglobinuria and hemosiderinuria associated with marked tubular hemosiderin deposition and HO-1 induction, while there was depletion of splenic iron stores. Kidney injury was of sufficient magnitude to increase serum lactate dehydrogenase (LDH) and was oxidative in nature as shown by increased expression of 8-hydroxydeoxyguanosine (8-OHdg, a byproduct of oxidative DNA damage) in podocytes and tubular epithelial cells. These observations highlight a detrimental effect of podocyte-targeted HO-1 overexpression on ageing-related renal pathology and point to increased renal iron deposition as a putative underlying mechanism.
Our presentation illustrates a rare case of primary renal pelvis malignant melanoma in a 35-year-old man. The diagnosis of malignant melanoma was based on immunophenotype and the detection of intracellular melanin pigment. The renal origin was proven by the presence of scattered melanocytes within the urothelium of the pelvis. The tumor exhibited extensive clear cell change that closely mimics clear cell renal cell carcinoma. The patient’s clinical history did not disclose any signs of previous melanocytic skin or mucosa lesions. Differential diagnosis includes tumors capable of synthesizing melanin or expressing melanocytic markers.
Background: Cilostazol is a drug of choice for the treatment of intermittent claudication that also affects innate and adaptive immune cells. The purpose of our study was the evaluation of cilostazol’s impact on the immune and angiogenic response in murine models of hind limb ischemia. Methods: We used 108 immunodeficient NOD.CB17-Prkdcscid/J mice and 108 wild-type CB17 mice. At day 0 (D0), all animals underwent hind limb ischemia. Half of them in both groups received daily cilostazol starting at D0 and for the next 7 postoperative days, while the rest of them served as controls, receiving vehicle. Interleukin (IL) 2, IL-4, IL-6, IL-10, IL-17A, tumor necrosis factor α (TNF-α), and interferon γ (IFN-γ) serum concentrations were measured by flow cytometry on postsurgery days D1, D3, D5, and D7. On D7, both groups underwent positron emission tomography scan with 68Ga-RGD. Mice were euthanatized and gastrocnemius muscles were obtained for histological evaluation. Results: There was a statistically significant augmentation ( P < .05) in IL-4, IL-10, IL-6, and IFN-γ concentrations in treated CB17 animals, while IL-2 was significantly suppressed. Significant difference was detected between the CiBisch and Bisch groups on D1 and D7 ( P < .05) in CD31 staining. In treated NOD.CB17 animals, TNF-α, IL-6, and IFN-γ presented significant augmentation, while 68Ga-NODAGA-RGDfK uptake and CD31 expression were found significantly lower for both legs in comparison to the control. Conclusion: Cilostazol seems to significantly increase angiogenesis in wild-type animals during the first postoperational week. It also influences immune cells, altering the type of immune response by promoting anti-inflammatory cytokine production in wild-type animals, while it helps toward inflammation regression in immunodeficient animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.