Although Notch signaling has been proposed as a therapeutic target for type-2 diabetes, liver steatosis, and atherosclerosis, its direct effect on pancreatic islets remains unknown. Here, we demonstrated a function of Dll4-Notch signaling inhibition on the biology of insulin-producing cells. We confirmed enhanced expression of key Notch signaling genes in purified pancreatic islets from diabetic NOD mice and showed that treatment with anti-Dll4 antibody specifically abolished Notch signaling pathway activation. Furthermore, we showed that Notch inhibition could drive proliferation of β-islet cells and confer protection from the development of STZ-induced diabetes. Importantly, inhibition of the Dll4 pathway in WT mice increased insulin secretion by inducing the differentiation of pancreatic β-islet cell progenitors, as well as the proliferation of insulin-secreting cells. These findings reveal a direct effect of Dll4-blockade on pancreatic islets that, in conjunction with its immunomodulatory effects, could be used for unmet medical needs hallmarked by inefficient insulin action.
Aims/hypothesisPancreatic beta cells maintain glucose homeostasis and beta cell dysfunction is a major risk factor in developing diabetes. Therefore, understanding the developmental regulatory networks that define a fully functional beta cell is important for elucidating the genetic origins of the disease. Aldehyde dehydrogenase activity has been associated with stem/progenitor cells and we have previously shown that Aldh1b1 is specifically expressed in pancreas progenitor pools. Here we address the hypothesis that Aldh1b1 may regulate the timing of the appearance and eventual functionality of beta cells.MethodsWe generated an Aldh1b1-knockout mouse line (Aldh1b1tm1lacZ) and used this to study pancreatic development, beta cell functionality and glucose homeostasis in the absence of Aldh1b1 function.ResultsDifferentiation in the developing pancreas of Aldh1b1tm1lacZ null mice was accelerated. Transcriptome analyses of newborn and adult islets showed misregulation of key beta cell transcription factors and genes crucial for beta cell function. Functional analyses showed that glucose-stimulated insulin secretion was severely compromised in islets isolated from null mice. Several key features of beta cell functionality were affected, including control of oxidative stress, glucose sensing, stimulus-coupling secretion and secretory granule biogenesis. As a result of beta cell dysfunction, homozygous mice developed glucose intolerance and age-dependent hyperglycaemia.Conclusions/interpretationThese findings show that Aldh1b1 influences the timing of the transition from the pancreas endocrine progenitor to the committed beta cell and demonstrate that changes in the timing of this transition lead to beta cell dysfunction and thus constitute a diabetes risk factor later in life.Gene Expression Omnibus (GEO) accession: GSE58025Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-015-3784-4) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.