This tutorial review summarizes the most important results and developments in the field of polymer science by means of single molecule fluorescence spectroscopy (SMFS) at ambient temperatures. A broad range of topics will be addressed and it will be discussed which single molecule methods are suitable to get the maximum amount of information about polymer structure, polymer dynamics and the photophysics of incorporated or embedded dye molecules. In particular, we will report on the use of polymer films for immobilization of molecules, the visualization of dynamics near the glass transition temperature Tg, the reptation of polymer chains, the conformation adopted by polymer chains and the in situ observation of the polymerization reaction itself.
A careful choice of the pyrrole building blocks allows the synthesis of a wide range of monohalogenated BODIPY dyes with excellent reactivity in palladium catalyzed coupling reactions.
The thermal motion of polymer chains in a crowded environment is anisotropic and highly confined. Whereas theoretical and experimental progress has been made, typically only indirect evidence of polymer dynamics is obtained either from scattering or mechanical response. Toward a complete understanding of the complicated polymer dynamics in crowded media such as biological cells, it is of great importance to unravel the role of heterogeneity and molecular individualism. In the present work, we investigate the dynamics of synthetic polymers and the tube-like motion of individual chains using time-resolved fluorescence microscopy. A single fluorescently labeled polymer molecule is observed in a sea of unlabeled polymers, giving access to not only the dynamics of the probe chain itself but also to that of the surrounding network. We demonstrate that it is possible to extract the characteristic time constants and length scales in one experiment, providing a detailed understanding of polymer dynamics at the single chain level. The quantitative agreement with bulk rheology measurements is promising for using local probes to study heterogeneity in complex, crowded systems.
We have prepared two fluorescent dyes derived from 8-(4-tolyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene with phenoxy and (o-bromo)phenoxy substituents at the 3,5-positions by a novel nucleophilic substitution reaction of the corresponding 3,5-dichloroBODIPY analogue. UV-vis absorption, steady-state and time-resolved fluorimetry have been used to investigate their solvent-dependent photophysical properties. The two BODIPY derivatives show narrow absorption and emission bands and display small Stokes shifts. The substituents at the 3,5-positions (phenoxy in 1 and o-bromophenoxy in 2) have a minor effect on the fluorescence quantum yields (0.16-0.40 for 1, 0.17-0.44 for 2) and lifetimes (1.09-2.51 ns for 1, 1.11-2.78 ns for 2). For both compounds, the fluorescence rate constant equals (1.5 +/- 0.1) x 10(8) s(-1).
Two conjugated oligomers, representing elementary segments of fluorene-thiophene copolymers, are compared in terms of the microscopic morphology and the optical properties of thin deposits. The atomic force microscopy morphological data and the solid-state absorption and emission spectra are interpreted in terms of the assembly of the conjugated molecules. The compound with a terthiophene central unit and fluorene end-groups shows well-defined monolayer-by-monolayer assembly into micrometer-long stripe-like structures, with a crystalline herringbone-type organization within the monolayers. Polarized confocal microscopy indicates a strong orientation of the crystalline domains within the stripes. In contrast, the compound with a terfluorene central unit and thiophene end groups forms no textured aggregates and the optical spectra in the solid-state are very similar to those recorded in solution, suggesting that the molecules interact only weakly in the solid. The difference in behaviour between the two compounds most probably originates from their different capability to form densely-packed assemblies of interacting p-systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.